33 research outputs found

    Strict Ideal Completions of the Lambda Calculus

    Get PDF
    The infinitary lambda calculi pioneered by Kennaway et al. extend the basic lambda calculus by metric completion to infinite terms and reductions. Depending on the chosen metric, the resulting infinitary calculi exhibit different notions of strictness. To obtain infinitary normalisation and infinitary confluence properties for these calculi, Kennaway et al. extend β\beta-reduction with infinitely many `⊥\bot-rules', which contract meaningless terms directly to ⊥\bot. Three of the resulting B\"ohm reduction calculi have unique infinitary normal forms corresponding to B\"ohm-like trees. In this paper we develop a corresponding theory of infinitary lambda calculi based on ideal completion instead of metric completion. We show that each of our calculi conservatively extends the corresponding metric-based calculus. Three of our calculi are infinitarily normalising and confluent; their unique infinitary normal forms are exactly the B\"ohm-like trees of the corresponding metric-based calculi. Our calculi dispense with the infinitely many ⊥\bot-rules of the metric-based calculi. The fully non-strict calculus (called 111111) consists of only β\beta-reduction, while the other two calculi (called 001001 and 101101) require two additional rules that precisely state their strictness properties: λx.⊥→⊥\lambda x.\bot \to \bot (for 001001) and ⊥ M→⊥\bot\,M \to \bot (for 001001 and 101101)

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Glueability of Resource Proof-Structures: Inverting the Taylor Expansion

    Get PDF
    A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure, through a rewriting system acting both on resource and MELL proof-structures

    Lambda-calculus and formal language theory

    Get PDF
    Formal and symbolic approaches have offered computer science many application fields. The rich and fruitful connection between logic, automata and algebra is one such approach. It has been used to model natural languages as well as in program verification. In the mathematics of language it is able to model phenomena ranging from syntax to phonology while in verification it gives model checking algorithms to a wide family of programs. This thesis extends this approach to simply typed lambda-calculus by providing a natural extension of recognizability to programs that are representable by simply typed terms. This notion is then applied to both the mathematics of language and program verification. In the case of the mathematics of language, it is used to generalize parsing algorithms and to propose high-level methods to describe languages. Concerning program verification, it is used to describe methods for verifying the behavioral properties of higher-order programs. In both cases, the link that is drawn between finite state methods and denotational semantics provide the means to mix powerful tools coming from the two worlds
    corecore