776 research outputs found

    Fast Isogeometric Boundary Element Method based on Independent Field Approximation

    Full text link
    An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries and a significant reduction of the right hand side of the system of equations for common boundary conditions. All these benefits are achieved without any loss of accuracy compared to conventional isogeometric formulations. The system matrices are approximated by means of hierarchical matrices to reduce the computational complexity for large scale analysis. For the required geometrical bisection of the domain, a strategy for the evaluation of bounding boxes containing the supports of NURBS basis functions is presented. The versatility and accuracy of the proposed methodology is demonstrated by convergence studies showing optimal rates and real world examples in two and three dimensions.Comment: 32 pages, 27 figure

    Flexibility of approximation in pies applied for solving elastoplastic boundary problems

    Get PDF
    The paper presents the flexibility of approximation in PIES applied for solving elastoplastic boundary value problems. Three various approaches to approximation of plastic strains have been tested. The first one bases on the globally applied Lagrange polynomial. The two remaining are local: inverse distance weighting (IDW) method and approximation in different zones by locally applied Lagrange polynomials. Some examples are solved and results obtained are compared with analytical solutions. Conclusions on the effectiveness of presented approaches have been drawn

    Parameterization adaption for 3D shape optimization in aerodynamics

    Full text link
    When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called "Free-Form Deformation" approach based on 3D tensorial B\'ezier parameterization. The proposed procedure leads to efficient numerical simulations with highly reduced computational costs

    MINVO Basis: Finding Simplexes with Minimum Volume Enclosing Polynomial Curves

    Full text link
    This paper studies the problem of finding the smallest nn-simplex enclosing a given nthn^{\text{th}}-degree polynomial curve. Although the Bernstein and B-Spline polynomial bases provide feasible solutions to this problem, the simplexes obtained by these bases are not the smallest possible, which leads to undesirably conservative results in many applications. We first prove that the polynomial basis that solves this problem (MINVO basis) also solves for the nthn^\text{th}-degree polynomial curve with largest convex hull enclosed in a given nn-simplex. Then, we present a formulation that is \emph{independent} of the nn-simplex or nthn^{\text{th}}-degree polynomial curve given. By using Sum-Of-Squares (SOS) programming, branch and bound, and moment relaxations, we obtain high-quality feasible solutions for any n∈Nn\in\mathbb{N} and prove numerical global optimality for n=1,2,3n=1,2,3. The results obtained for n=3n=3 show that, for any given 3rd3^{\text{rd}}-degree polynomial curve, the MINVO basis is able to obtain an enclosing simplex whose volume is 2.362.36 and 254.9254.9 times smaller than the ones obtained by the Bernstein and B-Spline bases, respectively. When n=7n=7, these ratios increase to 902.7902.7 and 2.997⋅10212.997\cdot10^{21}, respectively.Comment: 25 pages, 16 figure

    Computational Design of Cold Bent Glass Fa\c{c}ades

    Full text link
    Cold bent glass is a promising and cost-efficient method for realizing doubly curved glass fa\c{c}ades. They are produced by attaching planar glass sheets to curved frames and require keeping the occurring stress within safe limits. However, it is very challenging to navigate the design space of cold bent glass panels due to the fragility of the material, which impedes the form-finding for practically feasible and aesthetically pleasing cold bent glass fa\c{c}ades. We propose an interactive, data-driven approach for designing cold bent glass fa\c{c}ades that can be seamlessly integrated into a typical architectural design pipeline. Our method allows non-expert users to interactively edit a parametric surface while providing real-time feedback on the deformed shape and maximum stress of cold bent glass panels. Designs are automatically refined to minimize several fairness criteria while maximal stresses are kept within glass limits. We achieve interactive frame rates by using a differentiable Mixture Density Network trained from more than a million simulations. Given a curved boundary, our regression model is capable of handling multistable configurations and accurately predicting the equilibrium shape of the panel and its corresponding maximal stress. We show predictions are highly accurate and validate our results with a physical realization of a cold bent glass surface

    IST Austria Thesis

    Get PDF
    Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at the same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented. In architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly nontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick and high precision estimation of glass panel shape and stress while handling the shape multimodality. Fabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information into the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible. Both of these methods include inverse design tools keeping the user in the design loop

    Modelling of Surfaces of Engineering Products on the Basis of Array of Points

    Get PDF
    The method of designing elements of the surfaces\u27 frames based on array of points is suggested in the work. Elements of frames are contours that are received via interpolation of sets of points, which are selected from the initial array of points. The algorithms have been developed for design plane and spatial contours that represent the curves with specified geometrical properties with prescribed accuracy. Formed contours are used as elements of «Profile» and «Guide Curves» at forming the model of surface by means of function of «Lofted Surface» in CAD system. Using the method of designing elements of frames of the surfaces is actual for modeling of surfaces of technical items that function-interact with the environment. The developed method was proven while modelling functional surfaces that bound an impeller blade channel of a turbine compressor

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und FlĂ€chen, in den meisten FĂ€llen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und PrĂ€sentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verstĂ€ndliche Visualisierung der Simulationsergebnisse, wĂ€hrend eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschrĂ€nkten HardwareunterstĂŒtzung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue FĂ€higkeiten aktueller Grafikkarten aus, um den Stand der Technik bezĂŒglich QualitĂ€t, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwĂ€ndige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-FlĂ€chen und einen interaktiven Ray-Casting-Algorithmus fĂŒr die IsoflĂ€chenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz fĂŒr illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation fĂŒr die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten AnsĂ€tze basieren auf rasterisierter Geometrie und sind somit ebenfalls fĂŒr normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen RealitĂ€t darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-DatensĂ€tzen durchgefĂŒhrt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer QualitĂ€t möglich ist. Die EinfĂŒhrung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken fĂŒr die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare fĂŒr die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    The Construction of Optimized High-Order Surface Meshes by Energy-Minimization

    Get PDF
    Despite the increasing popularity of high-order methods in computational fluid dynamics, their application to practical problems still remains challenging. In order to exploit the advantages of high-order methods with geometrically complex computational domains, coarse curved meshes are necessary, i.e. high-order representations of the geometry. This dissertation presents a strategy for the generation of curved high-order surface meshes. The mesh generation method combines least-squares fitting with energy functionals, which approximate physical bending and stretching energies, in an incremental energy-minimizing fitting strategy. Since the energy weighting is reduced in each increment, the resulting surface representation features high accuracy. Nevertheless, the beneficial influence of the energy-minimization is retained. The presented method aims at enabling the utilization of the superior convergence properties of high-order methods by facilitating the construction of coarser meshes, while ensuring accuracy by allowing an arbitrary choice of geometric approximation order. Results show surface meshes of remarkable quality, even for very coarse meshes representing complex domains, e.g. blood vessels
    • 

    corecore