32 research outputs found

    Aerodynamic Optimization of High-Speed Trains Nose using a Genetic Algorithm and Artificial Neural Network

    Get PDF
    An aerodynamic optimization of the train aerodynamic characteristics in term of front wind action sensitivity is carried out in this paper. In particular, a genetic algorithm (GA) is used to perform a shape optimization study of a high-speed train nose. The nose is parametrically defined via Bézier Curves, including a wider range of geometries in the design space as possible optimal solutions. Using a GA, the main disadvantage to deal with is the large number of evaluations need before finding such optimal. Here it is proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibilities, Rsponse Surface Models and Artificial Neural Networks (ANN) are considered. Best results of prediction and generalization are obtained with ANN and those are applied in GA code. The paper shows the feasibility of using GA in combination with ANN for this problem, and solutions achieved are included

    Wake Analysis of an Aerodynamically Optimized Boxprop High Speed Propeller

    Get PDF
    The Boxprop is a novel, double-bladed, tip-joined propeller for high-speed flight. The concept draws inspiration from the box wing concept and could potentially decrease tip vortex strength compared with conventional propeller blades. Early Boxprop designs experienced significant amounts of blade interference. By performing a wake analysis and quantifying the various losses of the flow, it could be seen that these Boxprop designs produced 45% more swirl than a conventional reference blade. The reason for this was the proximity of the Boxprop blade halves to each other, which prevented the Boxprop from achieving the required aerodynamic loading on the outer parts of the blade. This paper presents an aerodynamic optimization of a 6-bladed Boxprop aiming at maximizing efficiency and thrust at cruise. A geometric parametrization has been adopted which decreases interference by allowing the blade halves to be swept in opposite directions. Compared with an earlier equal-thrust Boxprop design, the optimized design features a 7% percentage point increase in propeller efficiency and a lower amount of swirl and entropy generation. A vortex-like structure has also appeared downstream of the optimized Boxprop, but with two key differences relative to conventional propellers. (1) Its formation differs from a traditional tip vortex and (2) it is 46% weaker than the tip vortex of an optimized 12-bladed conventional propeller

    Aerodynamic multi-objective optimization of a transonic compressor rotor using meanline methods and CFD

    Get PDF
    Le performance del rotore transonico Rotor 37 (NASA) sono state ottimizzate tramite algoritmo genetico. L'utilizzo di un codice meanline per il calcolo della funzione obiettivo ha permesso di ridurre drasticamente i tempi di calcolo. Le performance del rotore ottimizzato sono state simulate tramite un'analisi numerica condotta in ANSYS CFX e i risultati sono stati confrontati con le predizioni del codice meanline.ope

    Airfoil Optimization using Design-by-Morphing

    Full text link
    We present Design-by-Morphing (DbM), a novel design methodology applicable to creating a search space for topology optimization of 2D airfoils. Most design techniques impose geometric constraints and sometimes designers' bias on the design space itself, thus restricting the novelty of the designs created, and only allowing for small local changes. We show that DbM methodology does not impose any such restrictions on the design space and allows for extrapolation from the search space, thus granting truly radical and large search space with a few design parameters. In comparison to other shape design methodologies, we apply DbM to create a search space for 2D airfoils. We optimize this airfoil shape design space for maximizing the lift-over-drag ratio, CLDmaxCLD_{max}, and stall angle tolerance, Δα\Delta \alpha. Using a bi-objective genetic algorithm to optimize the DbM space, it is found that we create a Pareto-front of radical airfoils exhibiting remarkable properties for both objectives

    Aeroacoustic optimization of a supersonic business jet

    Get PDF
    A multiobjective optimization has been developed for the design of the fuselage of a supersonic business jet. The attention is focused on the coupling between the CFD solver (Num3sis) developed at INRIA and the acoustic propagation code TRAPS in use at ONERA. The accuracy of the propagation prediction over the entire domain is fundamental for obtaining a valuable solution. In order to achieve this objective an iterative procedure for unstructured mesh adaptation is developed. Mesh adaptation has the potential to reduce the computational time increasing the density of the mesh only where required. After a brief introduction of the different tools required to solve the problem in analysis, the optimization is carried out in a hybrid process in which an evolutionary strategy (ES) is used first (exploration), and a gradient based method second for improve the accuracy (exploitation). The Pareto optimal curve is evaluated using the Pareto Archive Evolutionary Strategy[17] and with a classical Adapted Weighted Sum method[18] in order to compare the final results. This design methodology has the ability to generate non intuitive configuration that do not rely on the engineer's experience. Combining CAD modeling, CFD, acoustic propagation analysis and shape multicriterion optimization enhance the potential of investigation of such a complex physical phenomenon

    Wind turbine blade geometry design based on multi-objective optimization using metaheuristics

    Get PDF
    Abstract: The application of Evolutionary Algorithms (EAs) to wind turbine blade design can be interesting, by reducing the number of aerodynamic-to-structural design loops in the conventional design process, hence reducing the design time and cost. Recent developments showed satisfactory results with this approach, mostly combining Genetic Algorithms (GAs) with the Blade Element Momentum (BEM) theory. The general objective of the present work is to define and evaluate a design methodology for the rotor blade geometry in order to maximize the energy production of wind turbines and minimize the mass of the blade itself, using for that purpose stochastic multi-objective optimization methods. Therefore, the multi-objective optimization problem and its constraints were formulated, and the vector representation of the optimization parameters was defined. An optimization benchmark problem was proposed, which represents the wind conditions and present wind turbine concepts found in Brazil. This problem was used as a test-bed for the performance comparison of several metaheuristics, and also for the validation of the defined design methodology. A variable speed pitch-controlled 2.5 MW Direct-Drive Synchronous Generator (DDSG) turbine with a rotor diameter of 120 m was chosen as concept. Five different Multi-objective Evolutionary Algorithms (MOEAs) were selected for evaluation in solving this benchmark problem: Non-dominated Sorting Genetic Algorithm version II (NSGA-II), Quantum-inspired Multi-objective Evolutionary Algorithm (QMEA), two approaches of the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D), and Multi-objective Optimization Differential Evolution Algorithm (MODE). The results have shown that the two best performing techniques in this type of problem are NSGA-II and MOEA/D, one having more spread and evenly spaced solutions, and the other having a better convergence in the region of interest. QMEA was the worst MOEA in convergence and MODE the worst one in solutions distribution. But the differences in overall performance were slight, because the algorithms have alternated their positions in the evaluation rank of each metric. This was also evident by the fact that the known Pareto Front (PF) consisted of solutions from several techniques, with each dominating a different region of the objective space. Detailed analysis of the best blade design showed that the output of the design methodology is feasible in practice, given that flow conditions and operational features of the rotor were as desired, and also that the blade geometry is very smooth and easy to manufacture. Moreover, this geometry is easily exported to a Computer-Aided Design (CAD) or Computer-Aided Engineering (CAE) software. In this way, the design methodology defined by the present work was validated

    Path planning for mobile robots in the real world: handling multiple objectives, hierarchical structures and partial information

    Get PDF
    Autonomous robots in real-world environments face a number of challenges even to accomplish apparently simple tasks like moving to a given location. We present four realistic scenarios in which robot navigation takes into account partial information, hierarchical structures, and multiple objectives. We start by discussing navigation in indoor environments shared with people, where routes are characterized by effort, risk, and social impact. Next, we improve navigation by computing optimal trajectories and implementing human-friendly local navigation behaviors. Finally, we move to outdoor environments, where robots rely on uncertain traversability estimations and need to account for the risk of getting stuck or having to change route

    Low speed aerofoil optimization

    Get PDF
    Aerofoil shape has a significant influence on aircraft performance. Multiple methodologies can be applied, such as direct design, inverse design or performance design. With the improvement of computer technology there has been a continuing trend of automating this process by using performance­based methods and formal optimisation algorithms. Parametrization formulations of aerofoils have continually advanced, some examples are B­Spline, Class Shape Functions, Hicks­Henne functions and Bezier­PARSEC 3333. Main comparisons of parametrizations have focussed on morphology, design space and aerodynamic consistency. In the present work, the parametrizations mentioned are applied to aerofoil optimisation and their results compared for different numbers of design variables, in order to ascertain optimisation differences. Performance design optimisation is used in a multi­point approach with an aggregated objective function using weights that are determined using the aircraft design data, to maximize the score for the competition Air Cargo Challenge (ACC2019 and ACC2022), using XFOIL for aerodynamic analysis and particle swarm optimisation (PSO) under a modified version of the XOPTFOIL tool. The initial aerofoil was obtained by iterative inverse design during previous works, the optimisation includes the flap chord and deflection angle for the different selected lift coefficient conditions as design variables. The initial population is bounded between maximum and minimum limits set by the initial aerofoil design variables and an initial perturbation. The aerofoil is constrained by minimum and maximum thicknesses, a minimum trailing edge angle and a specified trailing edge thickness. Several additional restrictions are also imposed on the aerofoil to avoid unneeded analysis of a geometry with an expected non converged solution in XFOIL. These include the angles’ maximum, minimum and difference values of the two points closest to the leading edge, the maximum angle between any three consecutive points and the number of curvature sign reversals at the upper surface and lower surface of the aerofoil. To deal with the constraints and restrictions a penalty function is used, each penalty being normalised by a maximum set value. To ensure that these do not unduly constrain the domain exploration of the optimisation, a dynamic limit to the penalties is used. During the optimisation, this limit decreases linearly with the iterations. From two case studies, it was possible to demonstrate the tool ability to optimize aerofoils. In the first case, utilisation of B­Splines achieved better results relative to the other methods. In the second case, the dynamic limit, consistency method and XFOIL convergence recuperation method are studied. This last one has the greatest influence on optimisation.A topologia de perfis aerodinâmicos tem uma influência significativa no desempenho de aeronaves. Múltiplas metodologias podem ser aplicadas para definir perfis, tais como projeto direto, projeto inverso ou projeto por desempenho. Com o desenvolvimento da tecnologia computacional, tem havido uma tendência contínua para automatizar o projeto de perfis utilizando projeto por desempenho e algoritmos de otimização formais. A parametrização de perfis tem avançado lado a lado, alguns exemplos são B­Spline, funções de tipo morfológicas, funções de Hicks­Henne e Bezier­PARSEC 3333. As principais comparações entre estes métodos têm­se focado na morfologia, espaço de projeto e consistência aerodinâmica. No presente trabalho, os tipos de parameterização mencionados são utilizados para otimização de perfis e uma comparação é feita para diferentes números de variáveis com o objetivo de avaliar diferenças para a otimização. Projeto por desempenho é utilizado numa abordagem multi­ponto nesta dissertação, com uma função objetivo de agregação de pesos determinados via dados de projeto da aeronave, para maximizar a pontuação para a competição Air Cargo Challenge (ACC2019 e ACC2022), através do uso da ferramenta XFOIL para análise aerodinâmica e otimização por enxame de partículas sobre uma versão modificada da ferramenta XOPTFOIL. O perfil inicial foi obtido via projeto inverso de forma iterativa durante trabalhos anteriores. A otimização inclui a corda do flap e o ângulo de deflexão para diferentes condições de voo como variáveis de projeto. A população inicial é delimitada por limites máximos e mínimos determinados através das variáveis de projeto do perfil inicial e uma perturbação inicial. O perfil é constrangido pelas máxima e mínima espessuras, um ângulo de bordo de fuga mínimo e uma espessura de bordo de fuga fixa. Outras restrições adicionais são também impostas ao perfil para evitar a análise desnecessária de geometrias cujo solução do XFOIL não converge. Estas incluem os ângulos máximos, mínimos e a diferença dos dois pontos mais próximos ao bordo de ataque, o ângulo máximo entre quaisquer três pontos ao longo do perfil e o número máximo de mudanças de sinal da curvatura do perfil na superfície superior e inferior. Para lidar com estes constrangimentos e restrições utilizou­se uma função de penalidade com valores normalizados. De forma a garantir que estas não restringem o domínio de exploração da otimização, um limite dinâmico é aplicado à função penalidade. Este diminui linearmente durante a otimização. A partir de dois casos de estudo é possível demonstrar a capacidade de otimização da ferramenta. No primeiro, o uso de B­Splines alcançou melhores resultados comparativamente aos outros métodos. No segundo, o limite dinâmico, método para consistência e método de recuperação de convergência para a ferramenta XFOIL são estudados. Tendo este último o maior efeito na optimização

    Diseño de nuevos algoritmos de guiado y navegación con evasión de colisiones para vehículos aéreos no tripulados.

    Full text link
    Tesis por compendio[ES] Debido a la creciente popularidad sobre la variedad de los Vehículos No Tripulados tanto en el campo militar como en el comercial, y de sus capacidades para navegar por diversos entornos, ya sean terrestres, aéreos o marinos, se evidencia que la clásica planificación de trayectorias y movimientos bidimensionales 2D podría no ser suficiente en un futuro inmediato. De esta manera, se debe resaltar que el presente trabajo aborda el problema de los Vehículos Aéreos No Tripulados (UAVs) de ala fija. En este sentido, la necesidad de encontrar una trayectoria navegable en el espacio euclídeo 3D se hace cada vez más necesario. En el caso de los UAV, considerar su cinemática para generar trayectorias suaves en tres dimensiones puede tener un interés significativo para la navegación autónoma aérea. Finalmente, los beneficios adicionales que se pueden producir son importantes. La principal dificultad de este problema es que los vehículos aéreos de características no-holonómicas se ven obligados a avanzar sin la posibilidad de detenerse a través de trayectorias 3D con curvaturas limitadas. En este sentido, se ha investigado la manera de proporcionar una completa caracterización de trayectorias óptimas para UAVs con un radio de giro limitado que se mueve en el plano tridimensional a una velocidad constante. Para completar tales tareas, un planificador de trayectorias no sólo debe proporcionar rutas tridimensionales para alcanzar una posición de destino sin colisionar con obstáculos, sino también debe asegurar que tal trayectoria sea adecuada para los UAVs que poseen propiedades cinemáticas específicas. Por lo tanto, el desarrollo del trabajo ha completado la algoritmia que genera una trayectoria discreta tridimensional al definir un conjunto de puntos 3D, resultantes de una división del espacio euclídeo tridimensional de manera dinámica, determinando las mejores opciones de avance, evitando analizar cada espacio del entorno completo. De esta manera, partiendo de los puntos 3D resultantes de la planificación de trayectoria tridimensional, se ha generado una trayectoria en forma de curva suave construida en función de las limitaciones de giro del UAV (resaltando que es difícil asegurar que el camino resultante cumpla con las restricciones cinemáticas en las tres dimensiones simultáneamente). Finalmente, es importante destacar que a menudo las restricciones mencionadas se calculan secuencialmente y de forma bidimensional, sobre un par de dimensiones desacopladas, lo que limita la capacidad de optimización. Para todo ello, se ha desarrollado un algoritmo de suavizado para un planificador de trayectorias que considera las restricciones cinemáticas tridimensionales completas sin desacoplar las dimensiones.[CA] Debut a la creixent popularitat sobre la varietat dels Vehicles No Tripulats tant en el camp militar com en el comercial, i de les seves capacitats per navegar per diversos entorns, ja siguin terrestres, aeris o marins, s'evidencia que la clàssica planificació de trajectòries i moviments bidimensionals 2D podria no ser suficient en un futur immediat. D'aquesta manera, s'ha de ressaltar que el present treball aborda el problema dels Vehicles Aeris No Tripulats (UAV) d'ala fixa. En aquest sentit, la necessitat de trobar una trajectòria navegable en l'espai euclidià 3D es fa cada vegada més necessari. En el cas dels UAV, considerar la seva cinemàtica per generar trajectòries suaus en tres dimensions pot tenir un interès significatiu per a la navegació autònoma aèria. Finalment, els beneficis addicionals que es poden produir són importants. La principal dificultat d'aquest problema és que els vehicles aeris de característiques no-holonómicas es veuen obligats a avançar sense la possibilitat de detenir-se a través de trajectòries 3D amb curvatures limitades. En aquest sentit, s'ha investigat la manera de proporcionar una completa caracterització de trajectòries òptimes per UAVs amb un radi de gir limitat que es mou en el pla tridimensional a una velocitat constant. Per completar aquestes tasques, un planificador de trajectòries no només ha de proporcionar rutes tridimensionals per assolir una posició de destinació sense col·lisionar amb obstacles, sinó també ha d'assegurar que tal trajectòria sigui adequada per als UAVs que posseeixen propietats cinemàtiques específiques. Per tant, el desenvolupament de la feina ha completat la algorísmia que genera una trajectòria discreta tridimensional a l'definir un conjunt de punts 3D, resultants d'una divisió de l'espai euclidià tridimensional de manera dinàmica, determinant les millors opcions d'avanç, evitant analitzar cada espai de l' entorn complet. D'aquesta manera, partint dels punts 3D resultants de la planificació de trajectòria tridimensional, s'ha generat una trajectòria en forma de corba suau construïda en funció de les limitacions de gir de l'UAV (ressaltant que és difícil assegurar que el camí resultant compleixi amb les restriccions cinemàtiques en les tres dimensions simultàniament). Finalment, és important destacar que sovint les restriccions esmentades es calculen seqöencialment i de forma bidimensional, sobre un parell de dimensions desacoblades, el que limita la capacitat d'optimització. Per tot això, s'ha desenvolupat un algoritme de suavitzat per a un planificador de trajectòries que considera les restriccions cinemàtiques tridimensionals completes sense desacoblar les dimensions.[EN] Due to the growing popularity of the variety of Unmanned Vehicles in both the military and commercial fields, and their capabilities to navigate diverse environments, whether land, air or sea, it is evident that the classic two-dimensional 2D trajectory and motion planning may not be enough in the near future. Thus, it should be noted that this paper addresses the problem of fixed-wing Unmanned Aerial Vehicles (UAVs). In this sense, the need to find a navigable path in 3D Euclidean space becomes more and more necessary. In the case of UAVs, considering their kinematics to generate smooth trajectories in three dimensions may be of significant interest for autonomous air navigation. Finally, the additional benefits that can be produced are important. The main difficulty of this problem is that air vehicles with non-holonomic characteristics are forced to advance without the possibility of stopping through 3D trajectories with limited curvatures. In this regard, research has been conducted to provide a complete characterization of optimal trajectories for UAVs with a limited turning radius that move in the 3D plane at a constant speed. To complete such tasks, a path planner must not only provide three-dimensional paths to reach a target position without colliding with obstacles, but must also ensure that such a path is suitable for UAVs that possess specific kinematic properties. Therefore, the development of the work has completed the algorithm that generates a discrete three-dimensional path by defining a set of 3D points, resulting from a division of the three-dimensional Euclidean space in a dynamic way, determining the best forward options, avoiding to analyze each space of the whole environment. In this way, starting from the 3D points resulting from the three-dimensional path planning, a smooth curve path has been generated, built according to the UAV turning constraints (highlighting that it is difficult to ensure that the resulting path meets the kinematic constraints in the three dimensions simultaneously). Finally, it is important to note that often the constraints mentioned are calculated sequentially and in a two-dimensional shape, on a pair of decoupled dimensions, which limits the ability to optimize. For all this, a smoothing algorithm has been developed for a path planner that considers the complete three-dimensional kinematic constraints without decoupling the dimensions.Este trabajo ha sido parcialmente financiado por el Gobierno de España a través del Ministerio de Economía y Competitividad bajo el proyecto de Investigación DP I2015−71443−R, y por la administración local de la Generalitat Valenciana a través de los proyectos GV /2017/029 y AICO/2019/055. El autor ha sido beneficiario de una beca otorgada por el Instituto de Fomento al Talento Humano (IFTH) (2015−AR2Q9209) a través del Gobierno de Ecuador.Samaniego Riera, FE. (2021). Diseño de nuevos algoritmos de guiado y navegación con evasión de colisiones para vehículos aéreos no tripulados [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161274TESISCompendi

    The 7th Conference of PhD Students in Computer Science

    Get PDF
    corecore