677 research outputs found

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmannโ€™s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Segmentation of pelvic structures from preoperative images for surgical planning and guidance

    Get PDF
    Prostate cancer is one of the most frequently diagnosed malignancies globally and the second leading cause of cancer-related mortality in males in the developed world. In recent decades, many techniques have been proposed for prostate cancer diagnosis and treatment. With the development of imaging technologies such as CT and MRI, image-guided procedures have become increasingly important as a means to improve clinical outcomes. Analysis of the preoperative images and construction of 3D models prior to treatment would help doctors to better localize and visualize the structures of interest, plan the procedure, diagnose disease and guide the surgery or therapy. This requires efficient and robust medical image analysis and segmentation technologies to be developed. The thesis mainly focuses on the development of segmentation techniques in pelvic MRI for image-guided robotic-assisted laparoscopic radical prostatectomy and external-beam radiation therapy. A fully automated multi-atlas framework is proposed for bony pelvis segmentation in MRI, using the guidance of MRI AE-SDM. With the guidance of the AE-SDM, a multi-atlas segmentation algorithm is used to delineate the bony pelvis in a new \ac{MRI} where there is no CT available. The proposed technique outperforms state-of-the-art algorithms for MRI bony pelvis segmentation. With the SDM of pelvis and its segmented surface, an accurate 3D pelvimetry system is designed and implemented to measure a comprehensive set of pelvic geometric parameters for the examination of the relationship between these parameters and the difficulty of robotic-assisted laparoscopic radical prostatectomy. This system can be used in both manual and automated manner with a user-friendly interface. A fully automated and robust multi-atlas based segmentation has also been developed to delineate the prostate in diagnostic MR scans, which have large variation in both intensity and shape of prostate. Two image analysis techniques are proposed, including patch-based label fusion with local appearance-specific atlases and multi-atlas propagation via a manifold graph on a database of both labeled and unlabeled images when limited labeled atlases are available. The proposed techniques can achieve more robust and accurate segmentation results than other multi-atlas based methods. The seminal vesicles are also an interesting structure for therapy planning, particularly for external-beam radiation therapy. As existing methods fail for the very onerous task of segmenting the seminal vesicles, a multi-atlas learning framework via random decision forests with graph cuts refinement has further been proposed to solve this difficult problem. Motivated by the performance of this technique, I further extend the multi-atlas learning to segment the prostate fully automatically using multispectral (T1 and T2-weighted) MR images via hybrid \ac{RF} classifiers and a multi-image graph cuts technique. The proposed method compares favorably to the previously proposed multi-atlas based prostate segmentation. The work in this thesis covers different techniques for pelvic image segmentation in MRI. These techniques have been continually developed and refined, and their application to different specific problems shows ever more promising results.Open Acces

    Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.

    Get PDF
    Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vesselsโ€™ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    High-performance geometric vascular modelling

    Get PDF
    Image-based high-performance geometric vascular modelling and reconstruction is an essential component of computer-assisted surgery on the diagnosis, analysis and treatment of cardiovascular diseases. However, it is an extremely challenging task to efficiently reconstruct the accurate geometric structures of blood vessels out of medical images. For one thing, the shape of an individual section of a blood vessel is highly irregular because of the squeeze of other tissues and the deformation caused by vascular diseases. For another, a vascular system is a very complicated network of blood vessels with different types of branching structures. Although some existing vascular modelling techniques can reconstruct the geometric structure of a vascular system, they are either time-consuming or lacking sufficient accuracy. What is more, these techniques rarely consider the interior tissue of the vascular wall, which consists of complicated layered structures. As a result, it is necessary to develop a better vascular geometric modelling technique, which is not only of high performance and high accuracy in the reconstruction of vascular surfaces, but can also be used to model the interior tissue structures of the vascular walls.This research aims to develop a state-of-the-art patient-specific medical image-based geometric vascular modelling technique to solve the above problems. The main contributions of this research are:- Developed and proposed the Skeleton Marching technique to reconstruct the geometric structures of blood vessels with high performance and high accuracy. With the proposed technique, the highly complicated vascular reconstruction task is reduced to a set of simple localised geometric reconstruction tasks, which can be carried out in a parallel manner. These locally reconstructed vascular geometric segments are then combined together using shape-preserving blending operations to faithfully represent the geometric shape of the whole vascular system.- Developed and proposed the Thin Implicit Patch method to realistically model the interior geometric structures of the vascular tissues. This method allows the multi-layer interior tissue structures to be embedded inside the vascular wall to illustrate the geometric details of the blood vessel in real world

    ๋ณต๋ถ€ CT์—์„œ ๊ฐ„๊ณผ ํ˜ˆ๊ด€ ๋ถ„ํ•  ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ์‹ ์˜๊ธธ.๋ณต๋ถ€ ์ „์‚ฐํ™” ๋‹จ์ธต ์ดฌ์˜ (CT) ์˜์ƒ์—์„œ ์ •ํ™•ํ•œ ๊ฐ„ ๋ฐ ํ˜ˆ๊ด€ ๋ถ„ํ• ์€ ์ฒด์  ์ธก์ •, ์น˜๋ฃŒ ๊ณ„ํš ์ˆ˜๋ฆฝ ๋ฐ ์ถ”๊ฐ€์ ์ธ ์ฆ๊ฐ• ํ˜„์‹ค ๊ธฐ๋ฐ˜ ์ˆ˜์ˆ  ๊ฐ€์ด๋“œ์™€ ๊ฐ™์€ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ์ปจ๋ณผ๋ฃจ์…”๋„ ์ธ๊ณต ์‹ ๊ฒฝ๋ง (CNN) ํ˜•ํƒœ์˜ ๋”ฅ ๋Ÿฌ๋‹์ด ๋งŽ์ด ์ ์šฉ๋˜๋ฉด์„œ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์‹ค์ œ ์ž„์ƒ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋†’์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๊ธฐ๋Š” ์—ฌ์ „ํžˆ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ๋ฌผ์ฒด์˜ ๊ฒฝ๊ณ„๋Š” ์ „ํ†ต์ ์œผ๋กœ ์˜์ƒ ๋ถ„ํ• ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ด์šฉ๋˜์—ˆ์ง€๋งŒ, CT ์˜์ƒ์—์„œ ๊ฐ„์˜ ๋ถˆ๋ถ„๋ช…ํ•œ ๊ฒฝ๊ณ„๋ฅผ ์ถ”์ถœํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ํ˜„๋Œ€ CNN์—์„œ๋Š” ์ด๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ•  ์ž‘์—…์˜ ๊ฒฝ์šฐ, ๋ณต์žกํ•œ ํ˜ˆ๊ด€ ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋”ฅ ๋Ÿฌ๋‹์„ ์ ์šฉํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ์–‡์€ ํ˜ˆ๊ด€ ๋ถ€๋ถ„์˜ ์˜์ƒ ๋ฐ๊ธฐ ๋Œ€๋น„๊ฐ€ ์•ฝํ•˜์—ฌ ์›๋ณธ ์˜์ƒ์—์„œ ์‹๋ณ„ํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ„ ์–ธ๊ธ‰ํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ CNN๊ณผ ์–‡์€ ํ˜ˆ๊ด€์„ ํฌํ•จํ•˜๋Š” ๋ณต์žกํ•œ ๊ฐ„ ํ˜ˆ๊ด€์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ถ„ํ• ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ„ ๋ถ„ํ•  ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฐ–๋Š” CNN์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด, ๋‚ด๋ถ€์ ์œผ๋กœ ๊ฐ„ ๋ชจ์–‘์„ ์ถ”์ •ํ•˜๋Š” ๋ถ€๋ถ„์ด ํฌํ•จ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, CNN์„ ์‚ฌ์šฉํ•œ ํ•™์Šต์— ๊ฒฝ๊ณ„์„ ์˜ ๊ฐœ๋…์ด ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆ๋œ๋‹ค. ๋ชจํ˜ธํ•œ ๊ฒฝ๊ณ„๋ถ€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ์ „์ฒด ๊ฒฝ๊ณ„ ์˜์—ญ์„ CNN์— ํ›ˆ๋ จํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜๋ณต๋˜๋Š” ํ•™์Šต ๊ณผ์ •์—์„œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์ด ์Šค์Šค๋กœ ์˜ˆ์ธกํ•œ ํ™•๋ฅ ์—์„œ ๋ถ€์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ •๋œ ๋ถ€๋ถ„์  ๊ฒฝ๊ณ„๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•œ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ CNN์ด ๋‹ค๋ฅธ ์ตœ์‹  ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ์ •ํ™•๋„๊ฐ€ ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ CNN์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ๋Š” ๊ฐ„ ๋‚ด๋ถ€์˜ ๊ด€์‹ฌ ์˜์—ญ์„ ์ง€์ •ํ•˜๊ธฐ ์œ„ํ•ด ์•ž์„œ ํš๋“ํ•œ ๊ฐ„ ์˜์—ญ์„ ํ™œ์šฉํ•œ๋‹ค. ์ •ํ™•ํ•œ ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์œ„ํ•ด ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ์ถ”์ถœํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ํ™•์‹คํ•œ ํ›„๋ณด ์ ๋“ค์„ ์–ป๊ธฐ ์œ„ํ•ด, ์‚ผ์ฐจ์› ์˜์ƒ์˜ ์ฐจ์›์„ ๋จผ์ € ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์ด์ฐจ์›์œผ๋กœ ๋‚ฎ์ถ˜๋‹ค. ์ด์ฐจ์› ์˜์ƒ์—์„œ๋Š” ๋ณต์žกํ•œ ํ˜ˆ๊ด€์˜ ๊ตฌ์กฐ๊ฐ€ ๋ณด๋‹ค ๋‹จ์ˆœํ™”๋  ์ˆ˜ ์žˆ๋‹ค. ์ด์–ด์„œ, ์ด์ฐจ์› ์˜์ƒ์—์„œ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ํ˜ˆ๊ด€ ํ”ฝ์…€๋“ค์€ ์›๋ž˜์˜ ์‚ผ์ฐจ์› ๊ณต๊ฐ„์ƒ์œผ๋กœ ์—ญ ํˆฌ์˜๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ „์ฒด ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์„ ์œ„ํ•ด ์›๋ณธ ์˜์ƒ๊ณผ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ณต์žกํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‹จ์ˆœํ™”๋˜๊ณ  ์–‡์€ ํ˜ˆ๊ด€์ด ๋” ์ž˜ ๋ณด์ด๋Š” ์ด์ฐจ์› ์˜์ƒ์—์„œ ์–ป์€ ํ›„๋ณด ์ ๋“ค์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์–‡์€ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ์— ์˜ํ•˜๋ฉด ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž˜๋ชป๋œ ์˜์—ญ์˜ ์ถ”์ถœ ์—†์ด ๋‹ค๋ฅธ ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„๊ณผ ํ˜ˆ๊ด€์„ ๋ถ„ํ• ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ๊ตฌ์กฐ๋Š” ์‚ฌ๋žŒ์ด ๋””์ž์ธํ•œ ํ•™์Šต ๊ณผ์ •์ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ๊ฒฝ๊ณ„์„  ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ CNN์„ ์‚ฌ์šฉํ•œ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ๋‚ดํฌํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์€ ์ด์ฐจ์› ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํš๋“๋œ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ํ†ตํ•ด ์–‡์€ ํ˜ˆ๊ด€๋“ค์ด ์„ฑ๊ณต์ ์œผ๋กœ ๋ถ„ํ• ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„์˜ ํ•ด๋ถ€ํ•™์  ๋ถ„์„๊ณผ ์ž๋™ํ™”๋œ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์ด๋‹ค.Accurate liver and its vessel segmentation on abdominal computed tomography (CT) images is one of the most important prerequisites for computer-aided diagnosis (CAD) systems such as volumetric measurement, treatment planning, and further augmented reality-based surgical guide. In recent years, the application of deep learning in the form of convolutional neural network (CNN) has improved the performance of medical image segmentation, but it is difficult to provide high generalization performance for the actual clinical practice. Furthermore, although the contour features are an important factor in the image segmentation problem, they are hard to be employed on CNN due to many unclear boundaries on the image. In case of a liver vessel segmentation, a deep learning approach is impractical because it is difficult to obtain training data from complex vessel images. Furthermore, thin vessels are hard to be identified in the original image due to weak intensity contrasts and noise. In this dissertation, a CNN with high generalization performance and a contour learning scheme is first proposed for liver segmentation. Secondly, a liver vessel segmentation algorithm is presented that accurately segments even thin vessels. To build a CNN with high generalization performance, the auto-context algorithm is employed. The auto-context algorithm goes through two pipelines: the first predicts the overall area of a liver and the second predicts the final liver using the first prediction as a prior. This process improves generalization performance because the network internally estimates shape-prior. In addition to the auto-context, a contour learning method is proposed that uses only sparse contours rather than the entire contour. Sparse contours are obtained and trained by using only the mispredicted part of the network's final prediction. Experimental studies show that the proposed network is superior in accuracy to other modern networks. Multiple N-fold tests are also performed to verify the generalization performance. An algorithm for accurate liver vessel segmentation is also proposed by introducing vessel candidate points. To obtain confident vessel candidates, the 3D image is first reduced to 2D through maximum intensity projection. Subsequently, vessel segmentation is performed from the 2D images and the segmented pixels are back-projected into the original 3D space. Finally, a new level set function is proposed that utilizes both the original image and vessel candidate points. The proposed algorithm can segment thin vessels with high accuracy by mainly using vessel candidate points. The reliability of the points can be higher through robust segmentation in the projected 2D images where complex structures are simplified and thin vessels are more visible. Experimental results show that the proposed algorithm is superior to other active contour models. The proposed algorithms present a new method of segmenting the liver and its vessels. The auto-context algorithm shows that a human-designed curriculum (i.e., shape-prior learning) can improve generalization performance. The proposed contour learning technique can increase the accuracy of a CNN for image segmentation by focusing on its failures, represented by sparse contours. The vessel segmentation shows that minor vessel branches can be successfully segmented through vessel candidate points obtained by reducing the image dimension. The algorithms presented in this dissertation can be employed for later analysis of liver anatomy that requires accurate segmentation techniques.Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Problem statement 3 1.3 Main contributions 6 1.4 Contents and organization 9 Chapter 2 Related Works 10 2.1 Overview 10 2.2 Convolutional neural networks 11 2.2.1 Architectures of convolutional neural networks 11 2.2.2 Convolutional neural networks in medical image segmentation 21 2.3 Liver and vessel segmentation 37 2.3.1 Classical methods for liver segmentation 37 2.3.2 Vascular image segmentation 40 2.3.3 Active contour models 46 2.3.4 Vessel topology-based active contour model 54 2.4 Motivation 60 Chapter 3 Liver Segmentation via Auto-Context Neural Network with Self-Supervised Contour Attention 62 3.1 Overview 62 3.2 Single-pass auto-context neural network 65 3.2.1 Skip-attention module 66 3.2.2 V-transition module 69 3.2.3 Liver-prior inference and auto-context 70 3.2.4 Understanding the network 74 3.3 Self-supervising contour attention 75 3.4 Learning the network 81 3.4.1 Overall loss function 81 3.4.2 Data augmentation 81 3.5 Experimental Results 83 3.5.1 Overview 83 3.5.2 Data configurations and target of comparison 84 3.5.3 Evaluation metric 85 3.5.4 Accuracy evaluation 87 3.5.5 Ablation study 93 3.5.6 Performance of generalization 110 3.5.7 Results from ground-truth variations 114 3.6 Discussion 116 Chapter 4 Liver Vessel Segmentation via Active Contour Model with Dense Vessel Candidates 119 4.1 Overview 119 4.2 Dense vessel candidates 124 4.2.1 Maximum intensity slab images 125 4.2.2 Segmentation of 2D vessel candidates and back-projection 130 4.3 Clustering of dense vessel candidates 135 4.3.1 Virtual gradient-assisted regional ACM 136 4.3.2 Localized regional ACM 142 4.4 Experimental results 145 4.4.1 Overview 145 4.4.2 Data configurations and environment 146 4.4.3 2D segmentation 146 4.4.4 ACM comparisons 149 4.4.5 Evaluation of bifurcation points 154 4.4.6 Computational performance 159 4.4.7 Ablation study 160 4.4.8 Parameter study 162 4.5 Application to portal vein analysis 164 4.6 Discussion 168 Chapter 5 Conclusion and Future Works 170 Bibliography 172 ์ดˆ๋ก 197Docto

    Appearance Modelling and Reconstruction for Navigation in Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery is playing an increasingly important role for patient care. Whilst its direct patient benefit in terms of reduced trauma, improved recovery and shortened hospitalisation has been well established, there is a sustained need for improved training of the existing procedures and the development of new smart instruments to tackle the issue of visualisation, ergonomic control, haptic and tactile feedback. For endoscopic intervention, the small field of view in the presence of a complex anatomy can easily introduce disorientation to the operator as the tortuous access pathway is not always easy to predict and control with standard endoscopes. Effective training through simulation devices, based on either virtual reality or mixed-reality simulators, can help to improve the spatial awareness, consistency and safety of these procedures. This thesis examines the use of endoscopic videos for both simulation and navigation purposes. More specifically, it addresses the challenging problem of how to build high-fidelity subject-specific simulation environments for improved training and skills assessment. Issues related to mesh parameterisation and texture blending are investigated. With the maturity of computer vision in terms of both 3D shape reconstruction and localisation and mapping, vision-based techniques have enjoyed significant interest in recent years for surgical navigation. The thesis also tackles the problem of how to use vision-based techniques for providing a detailed 3D map and dynamically expanded field of view to improve spatial awareness and avoid operator disorientation. The key advantage of this approach is that it does not require additional hardware, and thus introduces minimal interference to the existing surgical workflow. The derived 3D map can be effectively integrated with pre-operative data, allowing both global and local 3D navigation by taking into account tissue structural and appearance changes. Both simulation and laboratory-based experiments are conducted throughout this research to assess the practical value of the method proposed
    • โ€ฆ
    corecore