10 research outputs found

    Exact Inference Techniques for the Analysis of Bayesian Attack Graphs

    Get PDF
    Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker's behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.Comment: 14 pages, 15 figure

    Efficient Attack Graph Analysis through Approximate Inference

    Get PDF
    Attack graphs provide compact representations of the attack paths that an attacker can follow to compromise network resources by analysing network vulnerabilities and topology. These representations are a powerful tool for security risk assessment. Bayesian inference on attack graphs enables the estimation of the risk of compromise to the system's components given their vulnerabilities and interconnections, and accounts for multi-step attacks spreading through the system. Whilst static analysis considers the risk posture at rest, dynamic analysis also accounts for evidence of compromise, e.g. from SIEM software or forensic investigation. However, in this context, exact Bayesian inference techniques do not scale well. In this paper we show how Loopy Belief Propagation - an approximate inference technique - can be applied to attack graphs, and that it scales linearly in the number of nodes for both static and dynamic analysis, making such analyses viable for larger networks. We experiment with different topologies and network clustering on synthetic Bayesian attack graphs with thousands of nodes to show that the algorithm's accuracy is acceptable and converge to a stable solution. We compare sequential and parallel versions of Loopy Belief Propagation with exact inference techniques for both static and dynamic analysis, showing the advantages of approximate inference techniques to scale to larger attack graphs.Comment: 30 pages, 14 figure

    Data quality maintenance in Data Integration Systems

    Get PDF
    A Data Integration System (DIS) is an information system that integrates data from a set of heterogeneous and autonomous information sources and provides it to users. Quality in these systems consists of various factors that are measured in data. Some of the usually considered ones are completeness, accuracy, accessibility, freshness, availability. In a DIS, quality factors are associated to the sources, to the extracted and transformed information, and to the information provided by the DIS to the user. At the same time, the user has the possibility of posing quality requirements associated to his data requirements. DIS Quality is considered as better, the nearer it is to the user quality requirements. DIS quality depends on data sources quality, on data transformations and on quality required by users. Therefore, DIS quality is a property that varies in function of the variations of these three other properties. The general goal of this thesis is to provide mechanisms for maintaining DIS quality at a level that satisfies the user quality requirements, minimizing the modifications to the system that are generated by quality changes. The proposal of this thesis allows constructing and maintaining a DIS that is tolerant to quality changes. This means that the DIS is constructed taking into account previsions of quality behavior, such that if changes occur according to these previsions the system is not affected at all by them. These previsions are provided by models of quality behavior of DIS data, which must be maintained up to date. With this strategy, the DIS is affected only when quality behavior models change, instead of being affected each time there is a quality variation in the system. The thesis has a probabilistic approach, which allows modeling the behavior of the quality factors at the sources and at the DIS, allows the users to state flexible quality requirements (using probabilities), and provides tools, such as certainty, mathematical expectation, etc., that help to decide which quality changes are relevant to the DIS quality. The probabilistic models are monitored in order to detect source quality changes, strategy that allows detecting changes on quality behavior and not only punctual quality changes. We propose to monitor also other DIS properties that affect its quality, and for each of these changes decide if they affect the behavior of DIS quality, taking into account DIS quality models. Finally, the probabilistic approach is also applied at the moment of determining actions to take in order to improve DIS quality. For the interpretation of DIS situation we propose to use statistics, which include, in particular, the history of the quality models
    corecore