75 research outputs found

    The moduli space of matroids

    Get PDF
    In the first part of the paper, we clarify the connections between several algebraic objects appearing in matroid theory: both partial fields and hyperfields are fuzzy rings, fuzzy rings are tracts, and these relations are compatible with the respective matroid theories. Moreover, fuzzy rings are ordered blueprints and lie in the intersection of tracts with ordered blueprints; we call the objects of this intersection pastures. In the second part, we construct moduli spaces for matroids over pastures. We show that, for any non-empty finite set EE, the functor taking a pasture FF to the set of isomorphism classes of rank-rr FF-matroids on EE is representable by an ordered blue scheme Mat(r,E)Mat(r,E), the moduli space of rank-rr matroids on EE. In the third part, we draw conclusions on matroid theory. A classical rank-rr matroid MM on EE corresponds to a K\mathbb{K}-valued point of Mat(r,E)Mat(r,E) where K\mathbb{K} is the Krasner hyperfield. Such a point defines a residue pasture kMk_M, which we call the universal pasture of MM. We show that for every pasture FF, morphisms kM→Fk_M\to F are canonically in bijection with FF-matroid structures on MM. An analogous weak universal pasture kMwk_M^w classifies weak FF-matroid structures on MM. The unit group of kMwk_M^w can be canonically identified with the Tutte group of MM. We call the sub-pasture kMfk_M^f of kMwk_M^w generated by ``cross-ratios' the foundation of MM,. It parametrizes rescaling classes of weak FF-matroid structures on MM, and its unit group is coincides with the inner Tutte group of MM. We show that a matroid MM is regular if and only if its foundation is the regular partial field, and a non-regular matroid MM is binary if and only if its foundation is the field with two elements. This yields a new proof of the fact that a matroid is regular if and only if it is both binary and orientable.Comment: 83 page

    Axioms for infinite matroids

    Full text link
    We give axiomatic foundations for non-finitary infinite matroids with duality, in terms of independent sets, bases, circuits, closure and rank. This completes the solution to a problem of Rado of 1966.Comment: 33 pp., 2 fig

    International Journal of Mathematical Combinatorics, Vol.6

    Get PDF
    The International J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 460 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences

    Matroid theory for algebraic geometers

    Full text link
    This article is a survey of matroid theory aimed at algebraic geometers. Matroids are combinatorial abstractions of linear subspaces and hyperplane arrangements. Not all matroids come from linear subspaces; those that do are said to be representable. Still, one may apply linear algebraic constructions to non-representable matroids. There are a number of different definitions of matroids, a phenomenon known as cryptomorphism. In this survey, we begin by reviewing the classical definitions of matroids, develop operations in matroid theory, summarize some results in representability, and construct polynomial invariants of matroids. Afterwards, we focus on matroid polytopes, introduced by Gelfand-Goresky-MacPherson-Serganova, which give a cryptomorphic definition of matroids. We explain certain locally closed subsets of the Grassmannian, thin Schubert cells, which are labeled by matroids, and which have applications to representability, moduli problems, and invariants of matroids following Fink-Speyer. We explain how matroids can be thought of as cohomology classes in a particular toric variety, the permutohedral variety, by means of Bergman fans, and apply this description to give an exposition of the proof of log-concavity of the characteristic polynomial of representable matroids due to the author with Huh.Comment: 74 page

    Matroids over a ring

    Get PDF
    We introduce the notion of a matroid M over a commutative ring R, assigning to every subset of the ground set an R-module according to some axioms. When R is a field, we recover matroids. When R D Z, and when R is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids, i.e. tropical linear spaces, respectively. More generally, whenever R is a Dedekind domain, we extend all the usual properties and operations holding for matroids (e.g., duality), and we explicitly describe the structure of the matroids over R. Furthermore, we compute the Tutte-Grothendieck ring of matroids over R. We also show that the Tutte quasi-polynomial of a matroid over Z can be obtained as an evaluation of the class of the matroid in the Tutte-Grothendieck ring
    • …
    corecore