12,882 research outputs found

    A process algebra for synchronous concurrent constraint programming

    Get PDF
    Concurrent constraint programming is classically based on asynchronous communication via a shared store. This paper presents new version of the ask and tell primitives which features synchronicity. Our approach is based on the idea of telling new information just in the case that a concurrently running process is asking for it. An operational and an algebraic semantics are defined. The algebraic semantics is proved to be sound and complete with respect to a compositional operational semantics which is also presented in the paper

    Verification of random behaviours

    Get PDF
    We introduce abstraction in a probabilistic process algebra. The process algebra can be employed for specifying processes that exhibit both probabilistic and non-deterministic choices in their behaviours. Several rules and axioms are identified, allowing us to rewrite processes to less complex processes by removing redundant internal activity. Using these rules, we have successfully conducted a verification of the Concurrent Alternating Bit Protocol. The verification shows that after abstraction of internal activity, the protocol behaves as a buffer

    Process Algebras

    Get PDF
    Process Algebras are mathematically rigorous languages with well defined semantics that permit describing and verifying properties of concurrent communicating systems. They can be seen as models of processes, regarded as agents that act and interact continuously with other similar agents and with their common environment. The agents may be real-world objects (even people), or they may be artifacts, embodied perhaps in computer hardware or software systems. Many different approaches (operational, denotational, algebraic) are taken for describing the meaning of processes. However, the operational approach is the reference one. By relying on the so called Structural Operational Semantics (SOS), labelled transition systems are built and composed by using the different operators of the many different process algebras. Behavioral equivalences are used to abstract from unwanted details and identify those systems that react similarly to external experiments

    Two Algebraic Process Semantics for Contextual Nets

    No full text
    We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs

    Model Checking Dynamic-Epistemic Spatial Logic

    Get PDF
    In this paper we focus on Dynamic Spatial Logic, the extension of Hennessy-Milner logic with the parallel operator. We develop a sound complete Hilbert-style axiomatic system for it comprehending the behavior of spatial operators in relation with dynamic/temporal ones. Underpining on a new congruence we define over the class of processes - the structural bisimulation - we prove the finite model property for this logic that provides the decidability for satisfiability, validity and model checking against process semantics. Eventualy we propose algorithms for validity, satisfiability and model checking
    • ā€¦
    corecore