65,282 research outputs found

    Axioms for graph clustering quality functions

    Get PDF
    We investigate properties that intuitively ought to be satisfied by graph clustering quality functions, that is, functions that assign a score to a clustering of a graph. Graph clustering, also known as network community detection, is often performed by optimizing such a function. Two axioms tailored for graph clustering quality functions are introduced, and the four axioms introduced in previous work on distance based clustering are reformulated and generalized for the graph setting. We show that modularity, a standard quality function for graph clustering, does not satisfy all of these six properties. This motivates the derivation of a new family of quality functions, adaptive scale modularity, which does satisfy the proposed axioms. Adaptive scale modularity has two parameters, which give greater flexibility in the kinds of clusterings that can be found. Standard graph clustering quality functions, such as normalized cut and unnormalized cut, are obtained as special cases of adaptive scale modularity. In general, the results of our investigation indicate that the considered axiomatic framework covers existing `good' quality functions for graph clustering, and can be used to derive an interesting new family of quality functions.Comment: 23 pages. Full text and sources available on: http://www.cs.ru.nl/~T.vanLaarhoven/graph-clustering-axioms-2014

    Non-perturbative \lambda\Phi^4 in D=1+1: an example of the constructive quantum field theory approach in a schematic way

    Get PDF
    During the '70, several relativistic quantum field theory models in D=1+1D=1+1 and also in D=2+1D=2+1 have been constructed in a non-perturbative way. That was done in the so-called {\it constructive quantum field theory} approach, whose main results have been obtained by a clever use of Euclidean functional methods. Although in the construction of a single model there are several technical steps, some of them involving long proofs, the constructive quantum field theory approach contains conceptual insights about relativistic quantum field theory that deserved to be known and which are accessible without entering in technical details. The purpose of this note is to illustrate such insights by providing an oversimplified schematic exposition of the simple case of λΦ4\lambda\Phi^4 (with m>0m>0) in D=1+1D=1+1. Because of the absence of ultraviolet divergences in its perturbative version, this simple example -although does not capture all the difficulties in the constructive quantum field theory approach- allows to stress those difficulties inherent to the non-perturbative definition. We have made an effort in order to avoid several of the long technical intermediate steps without missing the main ideas and making contact with the usual language of the perturbative approach.Comment: 63 pages. Typos correcte

    Thermodynamic bootstrap program for integrable QFT's: Form factors and correlation functions at finite energy density

    Full text link
    We study the form factors of local operators of integrable QFT's between states with finite energy density. These states arise, for example, at finite temperature, or from a generalized Gibbs ensemble. We generalize Smirnov's form factor axioms, formulating them for a set of particle/hole excitations on top of the thermodynamic background, instead of the vacuum. We show that exact form factors can be found as minimal solutions of these new axioms. The thermodynamic form factors can be used to construct correlation functions on thermodynamic states. The expression found for the two-point function is similar to the conjectured LeClair-Mussardo formula, but using the new form factors dressed by the thermodynamic background, and with all singularities properly regularized. We study the different infrared asymptotics of the thermal two-point function, and show there generally exist two different regimes, manifesting massive exponential decay, or effectively gapless behavior at long distances, respectively. As an example, we compute the few-excitations form factors of vertex operators for the sinh-Gordon model.Comment: 41 pages, 10 figure

    Extending the Extensional Lambda Calculus with Surjective Pairing is Conservative

    Get PDF
    We answer Klop and de Vrijer's question whether adding surjective-pairing axioms to the extensional lambda calculus yields a conservative extension. The answer is positive. As a byproduct we obtain a "syntactic" proof that the extensional lambda calculus with surjective pairing is consistent.Comment: To appear in Logical Methods in Computer Scienc

    String field theory vertex from integrability

    Get PDF
    We propose a framework for computing the (light cone) string field theory vertex in the case when the string worldsheet QFT is a generic integrable theory. The prime example and ultimate goal would be the AdS5Ă—S5AdS_5 \times S^5 superstring theory cubic string vertex and the chief application will be to use this framework as a formulation for N=4{ \cal N}=4 SYM theory OPE coefficients valid at any coupling up to wrapping corrections. In this paper we propose integrability axioms for the vertex, illustrate them on the example of the pp-wave string field theory and also uncover similar structures in weak coupling computations of OPE coefficients.Comment: pdflatex, 52 pages, 20 figures,v2: references added, typos correcte

    Tableaux Modulo Theories Using Superdeduction

    Full text link
    We propose a method that allows us to develop tableaux modulo theories using the principles of superdeduction, among which the theory is used to enrich the deduction system with new deduction rules. This method is presented in the framework of the Zenon automated theorem prover, and is applied to the set theory of the B method. This allows us to provide another prover to Atelier B, which can be used to verify B proof rules in particular. We also propose some benchmarks, in which this prover is able to automatically verify a part of the rules coming from the database maintained by Siemens IC-MOL. Finally, we describe another extension of Zenon with superdeduction, which is able to deal with any first order theory, and provide a benchmark coming from the TPTP library, which contains a large set of first order problems.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0117
    • …
    corecore