281 research outputs found

    H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics

    Full text link
    A certain class of Frobenius algebras has been used to characterize orthonormal bases and observables on finite-dimensional Hilbert spaces. The presence of units in these algebras means that they can only be realized finite-dimensionally. We seek a suitable generalization, which will allow arbitrary bases and observables to be described within categorical axiomatizations of quantum mechanics. We develop a definition of H*-algebra that can be interpreted in any symmetric monoidal dagger category, reduces to the classical notion from functional analysis in the category of (possibly infinite-dimensional) Hilbert spaces, and hence provides a categorical way to speak about orthonormal bases and quantum observables in arbitrary dimension. Moreover, these algebras reduce to the usual notion of Frobenius algebra in compact categories. We then investigate the relations between nonunital Frobenius algebras and H*-algebras. We give a number of equivalent conditions to characterize when they coincide in the category of Hilbert spaces. We also show that they always coincide in categories of generalized relations and positive matrices.Comment: 29 pages. Final versio

    Polyadic Algebras

    Get PDF
    This chapter surveys the development in the theory of polyadic algebras in the last decades
    • …
    corecore