273 research outputs found

    Bounded-analytic sequent calculi and embeddings for hypersequent logics

    Get PDF
    A sequent calculus with the subformula property has long been recognised as a highly favourable starting point for the proof theoretic investigation of a logic. However, most logics of interest cannot be presented using a sequent calculus with the subformula property. In response, many formalisms more intricate than the sequent calculus have been formulated. In this work we identify an alternative: retain the sequent calculus but generalise the subformula property to permit specific axiom substitutions and their subformulas. Our investigation leads to a classification of generalised subformula properties and is applied to infinitely many substructural, intermediate, and modal logics (specifically: those with a cut-free hypersequent calculus). We also develop a complementary perspective on the generalised subformula properties in terms of logical embeddings. This yields new complexity upper bounds for contractive-mingle substructural logics and situates isolated results on the so-called simple substitution property within a general theory

    A Canonical Model Construction for Iteration-Free PDL with Intersection

    Full text link
    We study the axiomatisability of the iteration-free fragment of Propositional Dynamic Logic with Intersection and Tests. The combination of program composition, intersection and tests makes its proof-theory rather difficult. We develop a normal form for formulae which minimises the interaction between these operators, as well as a refined canonical model construction. From these we derive an axiom system and a proof of its strong completeness.Comment: In Proceedings GandALF 2016, arXiv:1609.0364

    Reasoning about Knowledge and Belief: A Syntactical Treatment

    Get PDF
    The study of formal theories of agents has intensified over the last couple of decades, since such formalisms can be viewed as providing the specifications for building rational agents and multi-agent systems. Most of the proposed approaches are based upon the well-understood framework of modal logics and possible world semantics. Although intuitive and expressive, these approaches lack two properties that can be considered important to a rational agent's reasoning: quantification over the propositional attitudes, and self-referential statements. This paper presents an alternative framework which is different from those found in the literature in two ways: Firstly, a syntactical approach for the representation of the propositional attitudes is adopted. This involves the use of a truth predicate and syntactic modalities which are defined in terms of the truth predicate itself and corresponding modal operators. Secondly, an agent's information state includes both knowledge and beliefs. Independent modal operators for the two notions are introduced and based on them syntactic modalities are defined. Furthermore, the relation between knowledge and belief is thoroughly explored and three different connection axiomatisations for the modalities and the syntactic modalities are proposed and their properties investigated

    Axiomatising logics with separating conjunctions and modalities

    Get PDF
    International audienceModal separation logics are formalisms that combine modal operators to reason locally, with separating connectives that allow to perform global updates on the models. In this work, we design Hilbert-style proof systems for the modal separation logics MSL(⇤, h6 =i) and MSL(⇤, 3), where ⇤ is the separating conjunction, 3 is the standard modal operator and h6 =i is the di↵erence modality. The calculi only use the logical languages at hand (no external features such as labels) and take advantage of new normal forms and of their axiomatisation

    Characterising Testing Preorders for Finite Probabilistic Processes

    Full text link
    In 1992 Wang & Larsen extended the may- and must preorders of De Nicola and Hennessy to processes featuring probabilistic as well as nondeterministic choice. They concluded with two problems that have remained open throughout the years, namely to find complete axiomatisations and alternative characterisations for these preorders. This paper solves both problems for finite processes with silent moves. It characterises the may preorder in terms of simulation, and the must preorder in terms of failure simulation. It also gives a characterisation of both preorders using a modal logic. Finally it axiomatises both preorders over a probabilistic version of CSP.Comment: 33 page

    Canonical formulas for k-potent commutative, integral, residuated lattices

    Full text link
    Canonical formulas are a powerful tool for studying intuitionistic and modal logics. Actually, they provide a uniform and semantic way to axiomatise all extensions of intuitionistic logic and all modal logics above K4. Although the method originally hinged on the relational semantics of those logics, recently it has been completely recast in algebraic terms. In this new perspective canonical formulas are built from a finite subdirectly irreducible algebra by describing completely the behaviour of some operations and only partially the behaviour of some others. In this paper we export the machinery of canonical formulas to substructural logics by introducing canonical formulas for kk-potent, commutative, integral, residuated lattices (kk-CIRL\mathsf{CIRL}). We show that any subvariety of kk-CIRL\mathsf{CIRL} is axiomatised by canonical formulas. The paper ends with some applications and examples.Comment: Some typo corrected and additional comments adde

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Intuitionistic Non-Normal Modal Logics: A general framework

    Get PDF
    We define a family of intuitionistic non-normal modal logics; they can bee seen as intuitionistic counterparts of classical ones. We first consider monomodal logics, which contain only one between Necessity and Possibility. We then consider the more important case of bimodal logics, which contain both modal operators. In this case we define several interactions between Necessity and Possibility of increasing strength, although weaker than duality. For all logics we provide both a Hilbert axiomatisation and a cut-free sequent calculus, on its basis we also prove their decidability. We then give a semantic characterisation of our logics in terms of neighbourhood models. Our semantic framework captures modularly not only our systems but also already known intuitionistic non-normal modal logics such as Constructive K (CK) and the propositional fragment of Wijesekera's Constructive Concurrent Dynamic Logic.Comment: Preprin
    corecore