673 research outputs found

    Axiom of Choice, Maximal Independent Sets, Argumentation and Dialogue Games

    Get PDF
    In this work we investigate infinite structures. We discuss the importance, meaning and temptation of the axiom of choice and equivalent formulations with respect to graph theory, abstract argumentation and dialogue games. Emphasis is put on maximal independent sets in graph theory as well as preferred semantics in abstract argumentation

    A Formal Model of Metaphor in Frame Semantics

    Get PDF
    A formal model of metaphor is introduced. It models metaphor, first, as an interaction of “frames” according to the frame semantics, and then, as a wave function in Hilbert space. The practical way for a probability distribution and a corresponding wave function to be assigned to a given metaphor in a given language is considered. A series of formal definitions is deduced from this for: “representation”, “reality”, “language”, “ontology”, etc. All are based on Hilbert space. A few statements about a quantum computer are implied: The sodefined reality is inherent and internal to it. It can report a result only “metaphorically”. It will demolish transmitting the result “literally”, i.e. absolutely exactly. A new and different formal definition of metaphor is introduced as a few entangled wave functions corresponding to different “signs” in different language formally defined as above. The change of frames as the change from the one to the other formal definition of metaphor is interpreted as a formal definition of thought. Four areas of cognition are unified as different but isomorphic interpretations of the mathematical model based on Hilbert space. These are: quantum mechanics, frame semantics, formal semantics by means of quantum computer, and the theory of metaphor in linguistics

    New Perspectives on Games and Interaction

    Get PDF
    This volume is a collection of papers presented at the 2007 colloquium on new perspectives on games and interaction at the Royal Dutch Academy of Sciences in Amsterdam. The purpose of the colloquium was to clarify the uses of the concepts of game theory, and to identify promising new directions. This important collection testifies to the growing importance of game theory as a tool to capture the concepts of strategy, interaction, argumentation, communication, cooperation and competition. Also, it provides evidence for the richness of game theory and for its impressive and growing application

    Set- and Graph-theoretic Investigations in Abstract Argumentation

    Get PDF
    Abstract argumentation roots to similar parts in philosophy, linguistics and artificial intelligence. The core (syntactic) notions of argument and attack are commonly visualized via digraphs, as nodes and directed edges, respectively. Semantic evaluation functions then provide a meaning of acceptance (i.e. acceptable sets of arguments also called extensions) for any such abstract argumentation structure. In this thesis, for the very first time, we tackle the questions of acceptance and conflict from a graph- and set-theoretic point of view. We elaborate on the interspace between syntactic conflict/independence (defined by attack structure) and their semantic counterparts (defined by joint acceptance of arguments). Graph theory regards the filters and techniques we use to, respectively, categorize and describe abstract argumentation structures. Set theory regards the issues we have to deal with particularly for non-finite argument sets. For argumentation in the arbitrarily infinite case this thesis can and should be seen as reference work. For the matter of conflicts in abstract argumentation we further provide a solid base and formal framework for future research. All in all, this is a mathematicians view on abstract argumentation, deepening the field of conception and widening the angle of applicability

    Logical limits of abstract argumentation frameworks

    Get PDF
    International audienceDung’s (1995) argumentation framework takes as input two abstract entities: a set of arguments and a binary relation encoding attacks between these arguments. It returns acceptable sets of arguments, called extensions, w.r.t. a given semantics. While the abstract nature of this setting is seen as a great advantage, it induces a big gap with the application that it is used to. This raises some questions about the compatibility of the setting with a logical formalism (i.e., whether it is possible to instantiate it properly from a logical knowledge base), and about the significance of the various semantics in the application context. In this paper we tackle the above questions. We first propose to fill in the previous gap by extending Dung’s (1995) framework. The idea is to consider all the ingredients involved in an argumentation process. We start with the notion of an abstract monotonic logic which consists of a language (defining the formulas) and a consequence operator. We show how to build, in a systematic way, arguments from a knowledge base formalised in such a logic. We then recall some basic postulates that any instantiation should satisfy. We study how to choose an attack relation so that the instantiation satisfies the postulates. We show that symmetric attack relations are generally not suitable. However, we identify at least one ‘appropriate’ attack relation. Next, we investigate under stable, semi-stable, preferred, grounded and ideal semantics the outputs of logic-based instantiations that satisfy the postulates. For each semantics, we delimit the number of extensions an argumentation system may have, characterise the extensions in terms of subsets of the knowledge base, and finally characterise the set of conclusions that are drawn from the knowledge base. The study reveals that stable, semi-stable and preferred semantics either lead to counter-intuitive results or provide no added value w.r.t. naive semantics. Besides, naive semantics either leads to arbitrary results or generalises the coherence-based approach initially developed by Rescher and Manor (1970). Ideal and grounded semantics either coincide and generalise the free consequence relation developed by Benferhat, Dubois, and Prade (1997), or return arbitrary results. Consequently, Dung’s (1995) framework seems problematic when applied over deductive logical formalisms
    • 

    corecore