214 research outputs found

    Don’t Roll the Dice, Ask Twice: The Two-Query Distortion of Matching Problems and Beyond

    Get PDF
    In most social choice settings, the participating agents are typically required to express their preferences over the different alternatives in the form of linear orderings. While this simplifies preference elicitation, it inevitably leads to high distortion when aiming to optimize a cardinal objective such as the social welfare, since the values of the agents remain virtually unknown. A recent array of works put forward the agenda of designing mechanisms that can learn the values of the agents for a small number of alternatives via queries, and use this extra information to make a better-informed decision, thus improving distortion. Following this agenda, in this work we focus on a class of combinatorial problems that includes most well-known matching problems and several of their generalizations, such as One-Sided Matching, Two-Sided Matching, General Graph Matching, and kk-Constrained Resource Allocation. We design two-query mechanisms that achieve the best-possible worst-case distortion in terms of social welfare, and outperform the best-possible expected distortion that can be achieved by randomized ordinal mechanisms

    Peeking Behind the Ordinal Curtain: Improving Distortion via Cardinal Queries

    Get PDF
    Aggregating the preferences of individuals into a collective decision is the core subject of study of social choice theory. In 2006, Procaccia and Rosenschein considered a utilitarian social choice setting, where the agents have explicit numerical values for the alternatives, yet they only report their linear orderings over them. To compare different aggregation mechanisms, Procaccia and Rosenschein introduced the notion of distortion, which quantifies the inefficiency of using only ordinal information when trying to maximize the social welfare, i.e., the sum of the underlying values of the agents for the chosen outcome. Since then, this research area has flourished and bounds on the distortion have been obtained for a wide variety of fundamental scenarios. However, the vast majority of the existing literature is focused on the case where nothing is known beyond the ordinal preferences of the agents over the alternatives. In this paper, we take a more expressive approach, and consider mechanisms that are allowed to further ask a few cardinal queries in order to gain partial access to the underlying values that the agents have for the alternatives. With this extra power, we design new deterministic mechanisms that achieve significantly improved distortion bounds and, in many cases, outperform the best-known randomized ordinal mechanisms. We paint an almost complete picture of the number of queries required by deterministic mechanisms to achieve specific distortion bounds

    The Distortion of Distributed Facility Location

    Get PDF
    We study the distributed facility location problem, where a set of agents with positions on the line of real numbers are partitioned into disjoint districts, and the goal is to choose a point to satisfy certain criteria, such as optimize an objective function or avoid strategic behavior. A mechanism in our distributed setting works in two steps: For each district it chooses a point that is representative of the positions reported by the agents in the district, and then decides one of these representative points as the final output. We consider two classes of mechanisms: Unrestricted mechanisms which assume that the agents directly provide their true positions as input, and strategyproof mechanisms which deal with strategic agents and aim to incentivize them to truthfully report their positions. For both classes, we show tight bounds on the best possible approximation in terms of several minimization social objectives, including the well-known average social cost (average total distance of agents from the chosen point) and max cost (maximum distance among all agents from the chosen point), as well as other fairness-inspired objectives that are tailor-made for the distributed setting, in particular, the max-of-average and the average-of-max

    A Few Queries Go a Long Way: Information-Distortion Tradeoffs in Matching

    Get PDF
    We consider the One-Sided Matching problem, where n agents have preferences over n items, and these preferences are induced by underlying cardinal valuation functions. The goal is to match every agent to a single item so as to maximize the social welfare. Most of the related literature, however, assumes that the values of the agents are not a priori known, and only access to the ordinal preferences of the agents over the items is provided. Consequently, this incomplete information leads to loss of efficiency, which is measured by the notion of distortion. In this paper, we further assume that the agents can answer a small number of queries, allowing us partial access to their values. We study the interplay between elicited cardinal information (measured by the number of queries per agent) and distortion for One-Sided Matching, as well as a wide range of well-studied related problems. Qualitatively, our results show that with a limited number of queries, it is possible to obtain significant improvements over the classic setting, where only access to ordinal information is given

    Algorithm Design for Ordinal Settings

    Get PDF
    Social choice theory is concerned with aggregating the preferences of agents into a single outcome. While it is natural to assume that agents have cardinal utilities, in many contexts, we can only assume access to the agents’ ordinal preferences, or rankings over the outcomes. As ordinal preferences are not as expressive as cardinal utilities, a loss of efficiency is unavoidable. Procaccia and Rosenschein (2006) introduced the notion of distortion to quantify this worst-case efficiency loss for a given social choice function. We primarily study distortion in the context of election, or equivalently clustering problems, where we are given a set of agents and candidates in a metric space; each agent has a preference ranking over the set of candidates and we wish to elect a committee of k candidates that minimizes the total social cost incurred by the agents. In the single-winner setting (when k = 1), we give a novel LP-duality based analysis framework that makes it easier to analyze the distortion of existing social choice functions, and extends readily to randomized social choice functions. Using this framework, we show that it is possible to give simpler proofs of known results. We also show how to efficiently compute an optimal randomized social choice function for any given instance. We utilize the latter result to obtain an instance for which any randomized social choice function has distortion at least 2.063164. This disproves the long-standing conjecture that there exists a randomized social choice function that has a worst-case distortion of at most 2. When k is at least 2, it is not possible to compute an O(1)-distortion committee using purely ordinal information. We develop two O(1)-distortion mechanisms for this problem: one having a polylog(n) (per agent) query complexity, where n is the number of agents; and the other having O(k) query complexity (i.e., no dependence on n). We also study a much more general setting called minimum-norm k-clustering recently proposed in the clustering literature, where the objective is some monotone, symmetric norm of the the agents' costs, and we wish to find a committee of k candidates to minimize this objective. When the norm is the sum of the p largest costs, which is called the p-centrum problem in the clustering literature, we give low-distortion mechanisms by adapting our mechanisms for k-median. En route, we give a simple adaptive-sampling algorithm for this problem. Finally, we show how to leverage this adaptive-sampling idea to also obtain a constant-factor bicriteria approximation algorithm for minimum-norm k-clustering (in its full generality)
    • …
    corecore