1,724 research outputs found

    Software defect prediction: do different classifiers find the same defects?

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio

    Diversified Ensemble Classifiers for Highly Imbalanced Data Learning and their Application in Bioinformatics

    Get PDF
    In this dissertation, the problem of learning from highly imbalanced data is studied. Imbalance data learning is of great importance and challenge in many real applications. Dealing with a minority class normally needs new concepts, observations and solutions in order to fully understand the underlying complicated models. We try to systematically review and solve this special learning task in this dissertation.We propose a new ensemble learning framework—Diversified Ensemble Classifiers for Imbal-anced Data Learning (DECIDL), based on the advantages of existing ensemble imbalanced learning strategies. Our framework combines three learning techniques: a) ensemble learning, b) artificial example generation, and c) diversity construction by reversely data re-labeling. As a meta-learner, DECIDL utilizes general supervised learning algorithms as base learners to build an ensemble committee. We create a standard benchmark data pool, which contains 30 highly skewed sets with diverse characteristics from different domains, in order to facilitate future research on imbalance data learning. We use this benchmark pool to evaluate and compare our DECIDL framework with several ensemble learning methods, namely under-bagging, over-bagging, SMOTE-bagging, and AdaBoost. Extensive experiments suggest that our DECIDL framework is comparable with other methods. The data sets, experiments and results provide a valuable knowledge base for future research on imbalance learning. We develop a simple but effective artificial example generation method for data balancing. Two new methods DBEG-ensemble and DECIDL-DBEG are then designed to improve the power of imbalance learning. Experiments show that these two methods are comparable to the state-of-the-art methods, e.g., GSVM-RU and SMOTE-bagging. Furthermore, we investigate learning on imbalanced data from a new angle—active learning. By combining active learning with the DECIDL framework, we show that the newly designed Active-DECIDL method is very effective for imbalance learning, suggesting the DECIDL framework is very robust and flexible.Lastly, we apply the proposed learning methods to a real-world bioinformatics problem—protein methylation prediction. Extensive computational results show that the DECIDL method does perform very well for the imbalanced data mining task. Importantly, the experimental results have confirmed our new contributions on this particular data learning problem

    Towards Balanced Active Learning for Multimodal Classification

    Full text link
    Training multimodal networks requires a vast amount of data due to their larger parameter space compared to unimodal networks. Active learning is a widely used technique for reducing data annotation costs by selecting only those samples that could contribute to improving model performance. However, current active learning strategies are mostly designed for unimodal tasks, and when applied to multimodal data, they often result in biased sample selection from the dominant modality. This unfairness hinders balanced multimodal learning, which is crucial for achieving optimal performance. To address this issue, we propose three guidelines for designing a more balanced multimodal active learning strategy. Following these guidelines, a novel approach is proposed to achieve more fair data selection by modulating the gradient embedding with the dominance degree among modalities. Our studies demonstrate that the proposed method achieves more balanced multimodal learning by avoiding greedy sample selection from the dominant modality. Our approach outperforms existing active learning strategies on a variety of multimodal classification tasks. Overall, our work highlights the importance of balancing sample selection in multimodal active learning and provides a practical solution for achieving more balanced active learning for multimodal classification.Comment: 12 pages, accepted by ACMMM 202
    • …
    corecore