770 research outputs found

    Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey

    Get PDF
    Studies of ad hoc wireless networks are a relatively new field gaining more popularity for various new applications. In these networks, the Medium Access Control (MAC) protocols are responsible for coordinating the access from active nodes. These protocols are of significant importance since the wireless communication channel is inherently prone to errors and unique problems such as the hidden-terminal problem, the exposed-terminal problem, and signal fading effects. Although a lot of research has been conducted on MAC protocols, the various issues involved have mostly been presented in isolation of each other. We therefore make an attempt to present a comprehensive survey of major schemes, integrating various related issues and challenges with a view to providing a big-picture outlook to this vast area. We present a classification of MAC protocols and their brief description, based on their operating principles and underlying features. In conclusion, we present a brief summary of key ideas and a general direction for future work

    Integrated Optical-Wireless Interface and Detection

    Get PDF
    This chapter elaborates on the beneficial aspects and hardware implementations of incorporating ultradense WDM-PONs (UDWDM-PONs) with hybrid optical-wireless fronthaul links and fiber to the home applications. Simulation results on the synthesis of a low-cost and low-energy consumption optoelectronic unit within the future 5G base stations (BS) are presented. In addition, an advanced neural network is investigated capable of compensating for the linear and nonlinear effects induced by semiconductor optical amplifiers (SOA)

    Medium access control design for UWB communication systems: Review and trends

    Full text link

    MAC Protocols for Wireless Mesh Networks with Multi-beam Antennas: A Survey

    Full text link
    Multi-beam antenna technologies have provided lots of promising solutions to many current challenges faced in wireless mesh networks. The antenna can establish several beamformings simultaneously and initiate concurrent transmissions or receptions using multiple beams, thereby increasing the overall throughput of the network transmission. Multi-beam antenna has the ability to increase the spatial reuse, extend the transmission range, improve the transmission reliability, as well as save the power consumption. Traditional Medium Access Control (MAC) protocols for wireless network largely relied on the IEEE 802.11 Distributed Coordination Function(DCF) mechanism, however, IEEE 802.11 DCF cannot take the advantages of these unique capabilities provided by multi-beam antennas. This paper surveys the MAC protocols for wireless mesh networks with multi-beam antennas. The paper first discusses some basic information in designing multi-beam antenna system and MAC protocols, and then presents the main challenges for the MAC protocols in wireless mesh networks compared with the traditional MAC protocols. A qualitative comparison of the existing MAC protocols is provided to highlight their novel features, which provides a reference for designing the new MAC protocols. To provide some insights on future research, several open issues of MAC protocols are discussed for wireless mesh networks using multi-beam antennas.Comment: 22 pages, 6 figures, Future of Information and Communication Conference (FICC) 2019, https://doi.org/10.1007/978-3-030-12388-8_

    A Multirate MAC Protocol for Reliable Multicast in Multihop Wireless Networks

    Get PDF
    Many multicast applications, such as audio/video streaming, file sharing or emergency reporting, are becoming quite common in wireless mobile environment, through the widespread deployment of 802.11-based wirelessnetworks. However, despite the growing interest in the above applications, the current IEEE 802.11 standard does not offer any medium access control (MAC) layer support to the efficient and reliable provision of multicast services. It does not provide any MAC-layer recovery mechanism for unsuccessful multicast transmissions. Consequently, lost frames cannot be detected, hence retransmitted, causing a significant quality of service degradation. In addition, 802.11 multicast traffic is sent at the basic data rate, often resulting in severe throughput reduction. In this work, we address these issues by presenting areliablemulticastMACprotocol for wirelessmultihopnetworks, which is coupled with a lightweight rate adaptation scheme. Simulation results show that our schemes provide high packet delivery ratio and when compared with other state-of-the-art solutions, they also provide reduced control overhead and data delivery dela

    CONTENTION RESOLUTION MECHANISM FOR RECEIVER-DRIVEN TDMA-BASED WIRELESS SENSOR NETWORKS

    Get PDF
    TDMA-based protocols that have been proposed for wireless sensor networks (WSNs) use two opposite strategies of assigning slots to nodes. The transmitted-driven slot assignment schemes, which assign slots to nodes for message transmission, eliminate collisions of data messages, but waste energy due to message overhearing. The receiver-driven schemes, which assign slots to nodes for message reception, eliminate message overhearing, but the neighbors of slot owners have to contend for the medium. The existing proposals of the receiver-driven TDMA protocols employ CSMA-based contention resolution mechanisms, which suffer from both hidden- and exposed-terminal problem, thus limiting the applicability of the protocol to low traffic load conditions. In this paper, we propose a contention resolution mechanism, named TONE, specifically designed for receiver-driven TDMA protocols, which alleviates both the hidden- and exposed-terminal problem, given that a reception slot is not reused within a 2-hop neighborhood. TONE resolves contentions in successive elimination rounds by using a two-phase tone-based signaling mechanism in every round. We also propose a group splitting algorithm, which governs the elimination process in the manner that minimizes the number of tone transmissions, thereby improving the energy-efficiency. Our analysis, verified by simulation results, demonstrates that TONE outperforms the CSMA-based contention resolution mechanism and it can greatly improve the performance of receiver-driven TDMA-based WSNs under heavy traffic load. Also, our simulations show that the receiver-driven TDMA protocol with TONE outperforms transmitter-driven TDMA protocol in energy-efficiency, although with a limited drop in data throughput.Key words: wireless sensor network, MAC protocols, TDMA protocols, contention resolution mechanis

    Lightly synchronized Multipacket Reception in Machine-Type Communications Networks

    Get PDF
    Machine Type Communication (MTC) applications were designed to monitor and control elements of our surroundings and environment. MTC applications have a different set of requirements compared to the traditional communication devices, with Machine to Machine (M2M) data being mostly short, asynchronous, bursty and sometimes requiring end-to-end delays below 1ms. With the growth of MTC, the new generation of mobile communications has to be able to present different types of services with very different requirements, i.e. the same network has to be capable of "supplying" connection to the user that just wants to download a video or use social media, allowing at the same time MTC that has completely different requirements, without deteriorating both experiences. The challenges associated to the implementation of MTC require disruptive changes at the Physical (PHY) and Medium Access Control (MAC) layers, that lead to a better use of the spectrum available. The orthogonality and synchronization requirements of the PHY layer of current Long Term Evolution Advanced (LTE-A) radio access network (based on glsofdm and Single Carrier Frequency Domain Equalization (SC-FDE)) are obstacles for this new 5th Generation (5G) architecture. Generalized Frequency Division Multiplexing (GFDM) and other modulation techniques were proposed as candidates for the 5G PHY layer, however they also suffer from visible degradation when the transmitter and receiver are not synchronized, leading to a poor performance when collisions occur in an asynchronous MAC layer. This dissertation addresses the requirements of M2M traffic at the MAC layer applying multipacket reception (MPR) techniques to handle the bursty nature of the traffic and synchronization tones and optimized back-off approaches to reduce the delay. It proposes a new MAC protocol and analyses its performance analytically considering an SC-FDE modulation. The models are validated using a system level cross-layer simulator developed in MATLAB, which implements the MAC protocol and applies PHY layer performance models. The results show that the MAC’s latency depends mainly on the number of users and the load of each user, and can be controlled using these two parameters

    Improving the Performance of Medium Access Control Protocols for Mobile Adhoc Network with Smart Antennas

    Get PDF
    Requirements for high quality links and great demand for high throughput in Wireless LAN especially Mobile Ad-hoc Network has motivated new enhancements and work in Wireless communications such as Smart Antenna Systems. Smart (adaptive) Antennas enable spatial reuse, increase throughput and they increase the communication range because of the increase directivity of the antenna array. These enhancements quantified for the physical layer may not be efficiently utilized, unless the Media Access Control (MAC) layer is designed accordingly. This thesis implements the behaviours of two MAC protocols, ANMAC and MMAC protocols in OPNET simulator. This method is known as the Physical-MAC layer simulation model. The entire physical layer is written in MATLAB, and MATLAB is integrated into OPNET to perform the necessary stochastic physical layer simulations. The aim is to investigate the performance improvement in throughput and delay of the selected MAC Protocols when using Smart Antennas in a mobile environment. Analytical methods were used to analyze the average throughput and delay performance of the selected MAC Protocols with Adaptive Antenna Arrays in MANET when using spatial diversity. Comparison study has been done between the MAC protocols when using Switched beam antenna and when using the proposed scheme. It has been concluded that the throughput and delay performance of the selected protocols have been improved by the use of Adaptive Antenna Arrays. The throughput and delay performance of ANMAC-SW and ANMAC-AA protocols was evaluated in details against regular Omni 802.11 stations. Our results promise significantly enhancement over Omni 802.11, with a throughput of 25% for ANMAC-SW and 90% for ANMC-AA. ANMAC-AA outperforms ANMAC-SW protocol by 60%. Simulation experiments indicate that by using the proposed scheme with 4 Adaptive Antenna Array per a node, the average throughput in the network can be improved up to 2 to 2.5 times over that obtained by using Switched beam Antennas. The proposed scheme improves the performances of both ANMAC and MMAC protocols but ANMAC outperforms MMAC by 30%

    Integrated channel assignment and power control in cellular networks using hill-climbing approach.

    Get PDF
    Recent year\u27s incredible success and exponential growth of wireless cellular network services have necessitated careful management of radio resources to improve system capacity. Mainly due to the insufficiency of radio spectrum, reuse or sharing of radio frequency must be considered. In practical, the sharing of radio frequency introduces interferences among users, which in turn limit the system capacity. On the other hand, control of transmitter power can suppress co-channel interference, adjacent channel interference and limits the consumption of power. Thus channel assignment and power control are two effective means in wireless cellular networks and they are highly correlated to each other. Most of the existing papers have focused on optimizing the assignment of channels assuming that the allocation of transmitter power is known and fixed or vice-versa. In this thesis, we study the integration of channel assignment and power control simultaneously to increase the network capacity and throughput. We have proposed a new channel assignment approach, called HCA-PC (Hybrid Channel Assignment + Power Control) using dynamic reuse distance concept to optimize the channel assignment. We develop a Hill-climbing approach with random restart strategy, using an efficient problem representation and a fitness function that optimizes channel assignment and power control in the cellular network. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2003 .V52. Source: Masters Abstracts International, Volume: 44-03, page: 1392. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Cross-layer wireless bit rate adaptation

    Get PDF
    This paper presents SoftRate, a wireless bit rate adaptation protocol that is responsive to rapidly varying channel conditions. Unlike previous work that uses either frame receptions or signal-to-noise ratio (SNR) estimates to select bit rates, SoftRate uses confidence information calculated by the physical layer and exported to higher layers via the SoftPHY interface to estimate the prevailing channel bit error rate (BER). Senders use this BER estimate, calculated over each received packet (even when the packet has no bit errors), to pick good bit rates. SoftRate's novel BER computation works across different wireless environments and hardware without requiring any retraining. SoftRate also uses abrupt changes in the BER estimate to identify interference, enabling it to reduce the bit rate only in response to channel errors caused by attenuation or fading. Our experiments conducted using a software radio prototype show that SoftRate achieves 2X higher throughput than popular frame-level protocols such as SampleRate and RRAA. It also achieves 20% more throughput than an SNR-based protocol trained on the operating environment, and up to 4X higher throughput than an untrained SNR-based protocol. The throughput gains using SoftRate stem from its ability to react to channel variations within a single packet-time and its robustness to collision losses.National Science Foundation (U.S.) (Grant CNS-0721702)National Science Foundation (U.S.) (Grant CNS-0520032)Foxconn International Holdings Ltd
    corecore