1,646 research outputs found

    Multi-latin squares

    Get PDF
    A multi-latin square of order nn and index kk is an n×nn\times n array of multisets, each of cardinality kk, such that each symbol from a fixed set of size nn occurs kk times in each row and kk times in each column. A multi-latin square of index kk is also referred to as a kk-latin square. A 11-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin square. In this note we show that any partially filled-in kk-latin square of order mm embeds in a kk-latin square of order nn, for each n2mn\geq 2m, thus generalizing Evans' Theorem. Exploiting this result, we show that there exist non-separable kk-latin squares of order nn for each nk+2n\geq k+2. We also show that for each n1n\geq 1, there exists some finite value g(n)g(n) such that for all kg(n)k\geq g(n), every kk-latin square of order nn is separable. We discuss the connection between kk-latin squares and related combinatorial objects such as orthogonal arrays, latin parallelepipeds, semi-latin squares and kk-latin trades. We also enumerate and classify kk-latin squares of small orders.Comment: Final version as sent to journa

    Latin cubes of even order with forbidden entries

    Full text link
    We consider the problem of constructing Latin cubes subject to the condition that some symbols may not appear in certain cells. We prove that there is a constant γ>0\gamma > 0 such that if n=2tn=2t and AA is a 33-dimensional n×n×nn\times n\times n array where every cell contains at most γn\gamma n symbols, and every symbol occurs at most γn\gamma n times in every line of AA, then AA is {\em avoidable}; that is, there is a Latin cube LL of order nn such that for every 1i,j,kn1\leq i,j,k\leq n, the symbol in position (i,j,k)(i,j,k) of LL does not appear in the corresponding cell of AA.Comment: arXiv admin note: substantial text overlap with arXiv:1809.0239

    The Trapping Redundancy of Linear Block Codes

    Full text link
    We generalize the notion of the stopping redundancy in order to study the smallest size of a trapping set in Tanner graphs of linear block codes. In this context, we introduce the notion of the trapping redundancy of a code, which quantifies the relationship between the number of redundant rows in any parity-check matrix of a given code and the size of its smallest trapping set. Trapping sets with certain parameter sizes are known to cause error-floors in the performance curves of iterative belief propagation decoders, and it is therefore important to identify decoding matrices that avoid such sets. Bounds on the trapping redundancy are obtained using probabilistic and constructive methods, and the analysis covers both general and elementary trapping sets. Numerical values for these bounds are computed for the [2640,1320] Margulis code and the class of projective geometry codes, and compared with some new code-specific trapping set size estimates.Comment: 12 pages, 4 tables, 1 figure, accepted for publication in IEEE Transactions on Information Theor

    Perfect domination in regular grid graphs

    Full text link
    We show there is an uncountable number of parallel total perfect codes in the integer lattice graph Λ{\Lambda} of R2\R^2. In contrast, there is just one 1-perfect code in Λ{\Lambda} and one total perfect code in Λ{\Lambda} restricting to total perfect codes of rectangular grid graphs (yielding an asymmetric, Penrose, tiling of the plane). We characterize all cycle products Cm×CnC_m\times C_n with parallel total perfect codes, and the dd-perfect and total perfect code partitions of Λ{\Lambda} and Cm×CnC_m\times C_n, the former having as quotient graph the undirected Cayley graphs of Z2d2+2d+1\Z_{2d^2+2d+1} with generator set {1,2d2}\{1,2d^2\}. For r>1r>1, generalization for 1-perfect codes is provided in the integer lattice of Rr\R^r and in the products of rr cycles, with partition quotient graph K2r+1K_{2r+1} taken as the undirected Cayley graph of Z2r+1\Z_{2r+1} with generator set {1,...,r}\{1,...,r\}.Comment: 16 pages; 11 figures; accepted for publication in Austral. J. Combi
    corecore