12 research outputs found

    Avoidance of multicast incapable branching nodes for multicast routing in WDM networks

    Get PDF
    In this articlewestudy themulticast routing problem in all-opticalWDMnetworks under the spare light splitting constraint. To implement a multicast session, several light-trees may have to be used due to the limited fanouts of network nodes. Although many multicast routing algorithms have been proposed in order to reduce the total number of wavelength channels used (total cost) for a multicast session, the maximum number of wavelengths required in one fiber link (link stress) and the end-to-end delay are two parameters which are not always taken into consideration. It is known that the shortest path tree (SPT) results in the optimal end-to-end delay, but it can not be employed directly for multicast routing in sparse light splitting WDM networks. Hence, we propose a novel wavelength routing algorithm which tries to avoid the multicast incapable branching nodes (MIBs, branching nodes without splitting capability) in the shortest-path-based multicast tree to diminish the link stress. Good parts of the shortest-path-tree are retained by the algorithm to reduce the end-to-end delay. The algorithm consists of tree steps: (1) aDijkstraPro algorithmwith priority assignment and node adoption is introduced to produce a SPT with up to 38% fewer MIB nodes in the NSF topology and 46% fewerMIB nodes in the USA Longhaul topology, (2) critical articulation and deepest branch heuristics are used to process the MIB nodes, (3) a distance-based light-tree reconnection algorithm is proposed to create the multicast light-trees. Extensive simulations demonstrate the algorithm's efficiency in terms of link stress and end-to-end delay

    Hypo-Steiner heuristic for multicast routing in all-optical WDM mesh networks

    Get PDF
    International audienceIn sparse light splitting all-optical WDM networks, the more destinations a light-tree can accommodate, the fewer light-trees andwavelengths amulticast session will require. In this article, a Hypo-Steiner light-tree algorithm (HSLT) is proposed to construct a HSLT light-tree to include as many destinations as possible. The upper bound cost of the light-trees built by HSLT is given as N(N −1)/2, where N is the number of nodes in the network. The analytical model proves that, under the same condition, more destinations could be held in a HSLT than a Member-Only (Zhang et al., J. Lightware Technol, 18(12), 1917–1927 2000.) light-tree. Extensive simulations not only validate the proof but also show that the proposed heuristic outperforms the existing multicast routing algorithms by a large margin in terms of link stress, throughput, and efficiency ofwavelength usage

    Multicast Routing In Optical Access Networks

    Get PDF
    Widely available broadband services in the Internet require high capacity access networks. Only optical networking is able to efficiently provide the huge bandwidth required by multimedia applications. Distributed applications such as Video-Conferencing, HDTV, VOD and Distance Learning are increasingly common and produce a large amount of data traffic, typically between several terminals. Multicast is a bandwidth-efficient technique for one-to-many or many-to-many communications, and will be indispensable for serving multimedia applications in future optical access networks. These applications require robust and reliable connections as well as the satisfaction of QoS criteria. In this chapter, several access network architectures and related multicast routing methods are analyzed. Overall network performance and dependability are the focus of our analysis

    Performance Analysis of a Two Node Tandem Communication Network with Feedback

    Get PDF
    A Communication Network needs optimal utilization of resources such as bandwidth routers transmitters etc In this paper we have developed and analyzed a communication network with two nodes with feedback In this network the arrival of packets characterized by homogeneous Poisson process and transmission of both the transmitters is characterized by Poisson process Dynamic bandwidth allocation policy is proposed by adjusting the transmission rate at every transmitter just before transmission of each packet The model is evaluated using the difference-differential equations and a probability generating function of the number of packets in the buffer Through mathematical modeling performance measures including average number of packets in each buffer the probability of emptiness of the network the average waiting time in the buffer and in the network the throughput of the transmitters utilization and the variance of the number of packets in the buffer are derived under transient condition

    MATHEMATICAL PROGRAMMING ALGORITHMS FOR NETWORK OPTIMIZATION PROBLEMS

    Get PDF
    In the thesis we consider combinatorial optimization problems that are defined by means of networks. These problems arise when we need to take effective decisions to build or manage network structures, both satisfying the design constraints and minimizing the costs. In the thesis we focus our attention on the four following problems: - The Multicast Routing and Wavelength Assignment with Delay Constraint in WDM networks with heterogeneous capabilities (MRWADC) problem: this problem arises in the telecommunications industry and it requires to define an efficient way to make multicast transmissions on a WDM optical network. In more formal terms, to solve the MRWADC problem we need to identify, in a given directed graph that models the WDM optical network, a set of arborescences that connect the source of the transmission to all its destinations. These arborescences need to satisfy several quality-of-service constraints and need to take into account the heterogeneity of the electronic devices belonging to the WDM network. - The Homogeneous Area Problem (HAP): this problem arises from a particular requirement of an intermediate level of the Italian government called province. Each province needs to coordinate the common activities of the towns that belong to its territory. To practically perform its coordination role, the province of Milan created a customer care layer composed by a certain number of employees that have the task to support the towns of the province in their administrative works. For the sake of efficiency, the employees of this customer care layer have been partitioned in small groups and each group is assigned to a particular subset of towns that have in common a large number of activities. The HAP requires to identify the set of towns assigned to each group in order to minimize the redundancies generated by the towns that, despite having some activities in common, have been assigned to different groups. Since, for both historical and practical reasons, the towns in a particular subset need to be adjacent, the HAP can be effectively modeled as a particular graph partitioning problem that requires the connectivity of the obtained subgraphs and the satisfaction of nonlinear knapsack constraints. - Knapsack Prize Collecting Steiner Tree Problem (KPCSTP): to implement a Column Generation algorithm for the MRWADC problem and for the HAP, we need also to solve the two corresponding pricing problems. These two problems are very similar, both of them require to find an arborescence, contained in a given directed weighted graph, that minimizes the difference between its cost and the prizes associated with the spanned nodes. The two problems differ in the side constraints that their feasible solutions need to satisfy and in the way in which the cost of an arborescence is defined. The ILP formulations and the resolution methods that we developed to tackle these two problems have many characteristics in common with the ones used to solve other similar problems. To exemplify these similarities and to summarize and extend the techniques that we developed for the MRWADC problem and for the HAP, we also considered the KPCSTP. This problem requires to find a tree that minimizes the difference between the cost of the used arcs and the profits of the spanned nodes. However, not all trees are feasible: the sum of the weights of the nodes spanned by a feasible tree cannot exceed a given weight threshold. In the thesis we propose a computational comparison among several optimization methods for the KPCSTP that have been either already proposed in the literature or obtained modifying our ILP formulations for the two previous pricing problems. - The Train Design Optimization (TDO) problem: this problem was the topic of the second problem solving competition, sponsored in 2011 by the Railway Application Section (RAS) of the Institute for Operations Research and the Management Sciences (INFORMS). We participated to the contest and we won the second prize. After the competition, we continued to work on the TDO problem and in the thesis we describe the improved method that we have obtained at the end of this work. The TDO problem arises in the freight railroad industry. Typically, a freight railroad company receives requests from customers to transport a set of railcars from an origin rail yard to a destination rail yard. To satisfy these requests, the company first aggregates the railcars having the same origin and the same destination in larger blocks, and then it defines a trip plan to transport the obtained blocks to their correct destinations. The TDO problem requires to identify a trip plan that efficiently uses the limited resources of the considered rail company. More formally, given a railway network, a set of blocks and the segments of the network in which a crew can legally drive a train, the TDO problem requires to define a set of trains and the way in which the given blocks can be transported to their destinations by these trains, both satisfying operational constraints and minimizing the transportation costs

    Anales del XIII Congreso Argentino de Ciencias de la Computación (CACIC)

    Get PDF
    Contenido: Arquitecturas de computadoras Sistemas embebidos Arquitecturas orientadas a servicios (SOA) Redes de comunicaciones Redes heterogéneas Redes de Avanzada Redes inalámbricas Redes móviles Redes activas Administración y monitoreo de redes y servicios Calidad de Servicio (QoS, SLAs) Seguridad informática y autenticación, privacidad Infraestructura para firma digital y certificados digitales Análisis y detección de vulnerabilidades Sistemas operativos Sistemas P2P Middleware Infraestructura para grid Servicios de integración (Web Services o .Net)Red de Universidades con Carreras en Informática (RedUNCI

    Anales del XIII Congreso Argentino de Ciencias de la Computación (CACIC)

    Get PDF
    Contenido: Arquitecturas de computadoras Sistemas embebidos Arquitecturas orientadas a servicios (SOA) Redes de comunicaciones Redes heterogéneas Redes de Avanzada Redes inalámbricas Redes móviles Redes activas Administración y monitoreo de redes y servicios Calidad de Servicio (QoS, SLAs) Seguridad informática y autenticación, privacidad Infraestructura para firma digital y certificados digitales Análisis y detección de vulnerabilidades Sistemas operativos Sistemas P2P Middleware Infraestructura para grid Servicios de integración (Web Services o .Net)Red de Universidades con Carreras en Informática (RedUNCI
    corecore