1,743 research outputs found

    Unsupervised automatic tracking of thermal changes in human body

    Get PDF
    An automated system for detecting and tracking of the thermal fluctuation in human body is addressed. It applies HSV based k-means clustering which initialized and controlled the points which lie on the ROI boundary. Afterward a particle filter tracked the targeted ROI in the thermal video stream. There were six subjects have voluntarily participated on these experiments. For simulating the hot spots occur during the some medical tests a controllable heater utilized close to the subjects body. The results indicated promising accuracy of the proposed approach for tracking the hot spots. However, there were some approximations (e.g. the transmittance of the atmosphere and emissivity of the fabric) which can be neglected because of independency of the proposed approach for these parameters. The approach can track the heating spots efficiently considering the movement in the subjects which provided a confidence of considerable robustness against motion-artifact usually occurs in the medical tests

    The role of seas as a geographical barrier for migratory landbirds. An approach to the Bay of Biscay.

    Get PDF
    131 p.The East-Atlantic flyway represents one of the main bird migration routes worldwide, comprising the Bay of Biscayas an inherent geographical barrier. So far, the significance of the Bay of Biscay for migrants and its potentialimpact on migratory routes have not received much attention in research. The general aim of this thesis is to unravelthe role of the Bay of Biscay as a geographic barrier both at a small and large scale shaping the nocturnalmigration of landbirds moving along the East-Atlantic flyway. All observation tools available in the study regiondeemed suitable for nocturnal studies were employed: operational wind profiler and weather radars, thermalimaging and moonwatching. Previous knowledge from visual observations and bird ringing available in literaturewas also taken into account. Furthermore, in a pioneer approach, the study assessed the potential use ofwind profiler data in an ornithological context. An objective qualitative and quantitative approach validated bythermal imaging was established to extract migration parameters.Migration traffic rates, flight directions and altitudes obtained by the two types of radars and thermal imagingfor various sites along the bay are provided and discussed in a meteorological and ecological context. Verticalhistorical wind profiler and current thermal imaging data indicated pronounced broad-front migration in earlyspring vs. more eastward (i.e. sea-avoidance) migration in autumn. Moonwatching provided additional informationon bird composition and confirmed predominance of passerines. Finally, horizontal weather radar datarevealed a north-south gradient along the French coast in spring, with higher intensity in the south-easternstudy area close to the main migration axis of the East-Atlantic flyway.Aranzadi Zientzia Elkarte

    ๋ฌด์ธ๋น„ํ–‰์ฒด ํƒ‘์žฌ ์—ดํ™”์ƒ ๋ฐ ์‹คํ™”์ƒ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•œ ์•ผ์ƒ๋™๋ฌผ ํƒ์ง€ ๊ฐ€๋Šฅ์„ฑ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ™˜๊ฒฝ์กฐ๊ฒฝํ•™๊ณผ, 2022.2. ์†ก์˜๊ทผ.์•ผ์ƒ๋™๋ฌผ์˜ ํƒ์ง€์™€ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์œ„ํ•ด, ํ˜„์žฅ ์ง์ ‘ ๊ด€์ฐฐ, ํฌํš-์žฌํฌํš๊ณผ ๊ฐ™์€ ์ „ํ†ต์  ์กฐ์‚ฌ ๋ฐฉ๋ฒ•์ด ๋‹ค์–‘ํ•œ ๋ชฉ์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜์–ด์™”๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค์€ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ์ƒ๋Œ€์ ์œผ๋กœ ๋น„์‹ผ ๋น„์šฉ์ด ํ•„์š”ํ•˜๋ฉฐ, ์‹ ๋ขฐ ๊ฐ€๋Šฅํ•œ ํƒ์ง€ ๊ฒฐ๊ณผ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„  ์ˆ™๋ จ๋œ ํ˜„์žฅ ์ „๋ฌธ๊ฐ€๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ์ „ํ†ต์ ์ธ ํ˜„์žฅ ์กฐ์‚ฌ ๋ฐฉ๋ฒ•์€ ํ˜„์žฅ์—์„œ ์•ผ์ƒ๋™๋ฌผ์„ ๋งˆ์ฃผ์น˜๋Š” ๋“ฑ ์œ„ํ—˜ํ•œ ์ƒํ™ฉ์— ์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ, ์นด๋ฉ”๋ผ ํŠธ๋ž˜ํ•‘, GPS ์ถ”์ , eDNA ์ƒ˜ํ”Œ๋ง๊ณผ ๊ฐ™์€ ์›๊ฒฉ ์กฐ์‚ฌ ๋ฐฉ๋ฒ•์ด ๊ธฐ์กด์˜ ์ „ํ†ต์  ์กฐ์‚ฌ๋ฐฉ๋ฒ•์„ ๋Œ€์ฒดํ•˜๋ฉฐ ๋”์šฑ ๋นˆ๋ฒˆํžˆ ์‚ฌ์šฉ๋˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค์€ ์—ฌ์ „ํžˆ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋Œ€์ƒ์˜ ์ „์ฒด ๋ฉด์ ๊ณผ, ๊ฐœ๋ณ„ ๊ฐœ์ฒด๋ฅผ ํƒ์ง€ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ๋ฌด์ธ๋น„ํ–‰์ฒด (UAV, Unmanned Aerial Vehicle)๊ฐ€ ์•ผ์ƒ๋™๋ฌผ ํƒ์ง€์˜ ๋Œ€์ค‘์ ์ธ ๋„๊ตฌ๋กœ ์ž๋ฆฌ๋งค๊น€ํ•˜๊ณ  ์žˆ๋‹ค. UAV์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์€, ์„ ๋ช…ํ•˜๊ณ  ์ด˜์ด˜ํ•œ ๊ณต๊ฐ„ ๋ฐ ์‹œ๊ฐ„ํ•ด์ƒ๋„์™€ ํ•จ๊ป˜ ์ „์ฒด ์—ฐ๊ตฌ ์ง€์—ญ์— ๋Œ€ํ•œ ๋™๋ฌผ ํƒ์ง€๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด์— ๋”ํ•ด, UAV๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ์ ‘๊ทผํ•˜๊ธฐ ์–ด๋ ค์šด ์ง€์—ญ์ด๋‚˜ ์œ„ํ—˜ํ•œ ๊ณณ์— ๋Œ€ํ•œ ์กฐ์‚ฌ๊ฐ€ ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ด์  ์™ธ์—, UAV์˜ ๋‹จ์ ๋„ ๋ช…ํ™•ํžˆ ์กด์žฌํ•œ๋‹ค. ๋Œ€์ƒ์ง€, ๋น„ํ–‰ ์†๋„ ๋ฐ ๋†’์ด ๋“ฑ๊ณผ ๊ฐ™์ด UAV๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ™˜๊ฒฝ์— ๋”ฐ๋ผ, ์ž‘์€ ๋™๋ฌผ, ์šธ์ฐฝํ•œ ์ˆฒ์†์— ์žˆ๋Š” ๊ฐœ์ฒด, ๋น ๋ฅด๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์„ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์ œํ•œ๋œ๋‹ค. ๋˜ํ•œ, ๊ธฐ์ƒํ™˜๊ฒฝ์— ๋”ฐ๋ผ์„œ๋„ ๋น„ํ–‰์ด ๋ถˆ๊ฐ€ํ•  ์ˆ˜ ์žˆ๊ณ , ๋ฐฐํ„ฐ๋ฆฌ ์šฉ๋Ÿ‰์œผ๋กœ ์ธํ•œ ๋น„ํ–‰์‹œ๊ฐ„์˜ ์ œํ•œ๋„ ์กด์žฌํ•œ๋‹ค. ํ•˜์ง€๋งŒ, ์ •๋ฐ€ํ•œ ํƒ์ง€๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋”๋ผ๋„, ์ด์™€ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ๊พธ์ค€ํžˆ ์ˆ˜ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์„ ํ–‰์—ฐ๊ตฌ๋“ค์€ ์œก์ƒ ๋ฐ ํ•ด์ƒ ํฌ์œ ๋ฅ˜, ์กฐ๋ฅ˜, ๊ทธ๋ฆฌ๊ณ  ํŒŒ์ถฉ๋ฅ˜ ๋“ฑ์„ ํƒ์ง€ํ•˜๋Š” ๋ฐ์— ์„ฑ๊ณตํ•˜์˜€๋‹ค. UAV๋ฅผ ํ†ตํ•ด ์–ป์–ด์ง€๋Š” ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋ฐ์ดํ„ฐ๋Š” ์‹คํ™”์ƒ ์ด๋ฏธ์ง€์ด๋‹ค. ์ด๋ฅผ ์‚ฌ์šฉํ•ด ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฐ ๋”ฅ๋Ÿฌ๋‹ (ML-DL, Machine Learning and Deep Learning) ๋ฐฉ๋ฒ•์ด ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ƒ๋Œ€์ ์œผ๋กœ ์ •ํ™•ํ•œ ํƒ์ง€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์ง€๋งŒ, ํŠน์ • ์ข…์„ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด์„  ์ตœ์†Œํ•œ ์ฒœ ์žฅ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์‹คํ™”์ƒ ์ด๋ฏธ์ง€ ์™ธ์—๋„, ์—ดํ™”์ƒ ์ด๋ฏธ์ง€ ๋˜ํ•œ UAV๋ฅผ ํ†ตํ•ด ํš๋“ ๋  ์ˆ˜ ์žˆ๋‹ค. ์—ดํ™”์ƒ ์„ผ์„œ ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ๊ณผ ์„ผ์„œ ๊ฐ€๊ฒฉ์˜ ํ•˜๋ฝ์€ ๋งŽ์€ ์•ผ์ƒ๋™๋ฌผ ์—ฐ๊ตฌ์ž๋“ค์˜ ๊ด€์‹ฌ์„ ์‚ฌ๋กœ์žก์•˜๋‹ค. ์—ดํ™”์ƒ ์นด๋ฉ”๋ผ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋™๋ฌผ์˜ ์ฒด์˜จ๊ณผ ์ฃผ๋ณ€ํ™˜๊ฒฝ๊ณผ์˜ ์˜จ๋„ ์ฐจ์ด๋ฅผ ํ†ตํ•ด ์ •์˜จ๋™๋ฌผ์„ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ๊ฐ€ ์‚ฌ์šฉ๋˜๋”๋ผ๋„, ์—ฌ์ „ํžˆ ML-DL ๋ฐฉ๋ฒ•์ด ๋™๋ฌผ ํƒ์ง€์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ UAV๋ฅผ ํ™œ์šฉํ•œ ์•ผ์ƒ๋™๋ฌผ์˜ ์‹ค์‹œ๊ฐ„ ํƒ์ง€๋ฅผ ์ œํ•œํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์—ดํ™”์ƒ๊ณผ ์‹คํ™”์ƒ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•œ ๋™๋ฌผ ์ž๋™ ํƒ์ง€ ๋ฐฉ๋ฒ•์˜ ๊ฐœ๋ฐœ๊ณผ, ๊ฐœ๋ฐœ๋œ ๋ฐฉ๋ฒ•์ด ์ด์ „ ๋ฐฉ๋ฒ•๋“ค์˜ ํ‰๊ท  ์ด์ƒ์˜ ์ •ํ™•๋„์™€ ํ•จ๊ป˜ ํ˜„์žฅ์—์„œ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค.For wildlife detection and monitoring, traditional methods such as direct observation and capture-recapture have been carried out for diverse purposes. However, these methods require a large amount of time, considerable expense, and field-skilled experts to obtain reliable results. Furthermore, performing a traditional field survey can result in dangerous situations, such as an encounter with wild animals. Remote monitoring methods, such as those based on camera trapping, GPS collars, and environmental DNA sampling, have been used more frequently, mostly replacing traditional survey methods, as the technologies have developed. But these methods still have limitations, such as the lack of ability to cover an entire region or detect individual targets. To overcome those limitations, the unmanned aerial vehicle (UAV) is becoming a popular tool for conducting a wildlife census. The main benefits of UAVs are able to detect animals remotely covering a wider region with clear and fine spatial and temporal resolutions. In addition, by operating UAVs investigate hard to access or dangerous areas become possible. However, besides these advantages, the limitations of UAVs clearly exist. By UAV operating environments such as study site, flying height or speed, the ability to detect small animals, targets in the dense forest, tracking fast-moving animals can be limited. And by the weather, operating UAV is unable, and the flight time is limited by the battery matters. Although detailed detection is unavailable, related researches are developing and previous studies used UAV to detect terrestrial and marine mammals, avian and reptile species. The most common type of data acquired by UAVs is RGB images. Using these images, machine-learning and deep-learning (MLโ€“DL) methods were mainly used for wildlife detection. MLโ€“DL methods provide relatively accurate results, but at least 1,000 images are required to develop a proper detection model for specific species. Instead of RGB images, thermal images can be acquired by a UAV. The development of thermal sensor technology and sensor price reduction has attracted the interest of wildlife researchers. Using a thermal camera, homeothermic animals can be detected based on the temperature difference between their bodies and the surrounding environment. Although the technology and data are new, the same MLโ€“DL methods were typically used for animal detection. These ML-DL methods limit the use of UAVs for real-time wildlife detection in the field. Therefore, this paper aims to develop an automated animal detection method with thermal and RGB image datasets and to utilize it under in situ conditions in real-time while ensuring the average-above detection ability of previous methods.Abstract I Contents IV List of Tables VII List of Figures VIII Chapter 1. Introduction 1 1.1 Research background 1 1.2 Research goals and objectives 10 1.2.1 Research goals 10 1.2.2 Research objectives 11 1.3 Theoretical background 13 1.3.1 Concept of the UAV 13 1.3.2 Concept of the thermal camera 13 Chapter 2. Methods 15 2.1 Study site 15 2.2 Data acquisition and preprocessing 16 2.2.1 Data acquisition 16 2.2.2 RGB lens distortion correction and clipping 19 2.2.3 Thermal image correction by fur color 21 2.2.4 Unnatural object removal 22 2.3 Animal detection 24 2.3.1 Sobel edge creation and contour generation 24 2.3.2 Object detection and sorting 26 Chapter 3. Results 30 3.1 Number of counted objects 31 3.2 Time costs of image types 33 Chapter 4. Discussion 36 4.1 Reference comparison 36 4.2 Instant detection 40 4.3 Supplemental usage 41 4.4 Utility of thermal sensors 42 4.5 Applications in other fields 43 Chapter 5. Conclusions 47 References 49 Appendix: Glossary 61 ์ดˆ๋ก 62์„

    Webcams for Bird Detection and Monitoring: A Demonstration Study

    Get PDF
    Better insights into bird migration can be a tool for assessing the spread of avian borne infections or ecological/climatologic issues reflected in deviating migration patterns. This paper evaluates whether low budget permanent cameras such as webcams can offer a valuable contribution to the reporting of migratory birds. An experimental design was set up to study the detection capability using objects of different size, color and velocity. The results of the experiment revealed the minimum size, maximum velocity and contrast of the objects required for detection by a standard webcam. Furthermore, a modular processing scheme was proposed to track and follow migratory birds in webcam recordings. Techniques such as motion detection by background subtraction, stereo vision and lens distortion were combined to form the foundation of the bird tracking algorithm. Additional research to integrate webcam networks, however, is needed and future research should enforce the potential of the processing scheme by exploring and testing alternatives of each individual module or processing step

    Incremental low rank noise reduction for robust infrared tracking of body temperature during medical imaging

    Get PDF
    Thermal imagery for monitoring of body temperature provides a powerful tool to decrease health risks (e.g., burning) for patients during medical imaging (e.g., magnetic resonance imaging). The presented approach discusses an experiment to simulate radiology conditions with infrared imaging along with an automatic thermal monitoring/tracking system. The thermal tracking system uses an incremental low-rank noise reduction applying incremental singular value decomposition (SVD) and applies color based clustering for initialization of the region of interest (ROI) boundary. Then a particle filter tracks the ROI(s) from the entire thermal stream (video sequence). The thermal database contains 15 subjects in two positions (i.e., sitting, and lying) in front of thermal camera. This dataset is created to verify the robustness of our method with respect to motion-artifacts and in presence of additive noise (2โ€“20%โ€”salt and pepper noise). The proposed approach was tested for the infrared images in the dataset and was able to successfully measure and track the ROI continuously (100% detecting and tracking the temperature of participants), and provided considerable robustness against noise (unchanged accuracy even in 20% additive noise), which shows promising performanc

    Image and Information Fusion Experiments with a Software-Defined Multi-Spectral Imaging System for Aviation and Marine Sensor Networks

    Get PDF
    The availability of Internet, line-of-sight and satellite identification and surveillance information as well as low-power, low-cost embedded systems-on-a-chip and a wide range of visible to long-wave infrared cameras prompted Embry Riddle Aeronautical University to collaborate with the University of Alaska Arctic Domain Awareness Center (ADAC) in summer 2016 to prototype a camera system we call the SDMSI (Software-Defined Multi-spectral Imager). The concept for the camera system from the start has been to build a sensor node that is drop-in-place for simple roof, marine, pole-mount, or buoy-mounts. After several years of component testing, the integrated SDMSI is now being tested, first on a roof-mount at Embry Riddle Prescott. The roof-mount testing demonstrates simple installation for the high spatial, temporal and spectral resolution SDMSI. The goal is to define and develop software and systems technology to complement satellite remote sensing and human monitoring of key resources such as drones, aircraft and marine vessels in and around airports, roadways, marine ports and other critical infrastructure. The SDMSI was installed at Embry Riddle Prescott in fall 2016 and continuous recording of long-wave infrared and visible images have been assessed manually and compared to salient object detection to automatically record only frames containing objects of interest (e.g. aircraft and drones). It is imagined that ultimately users of the SDMSI can pair with it via wireless to browse salient images. Further, both ADS-B (Automatic Dependent Surveillance-Broadcast) and S-AIS (Satellite Automatic Identification System) data are envisioned to be used by the SDMSI to form expectations for observing in future tests. This paper presents the preliminary results of several experiments and compares human review with smart image processing in terms of the receiver-operator characteristic. The system design and software are open architecture, such that other researchers are encouraged to construct and participate in sharing results and networking identical or improved versions of the SDMSI for safety, security and drop-in-place scientific image sensor networking

    Automated assessment and tracking of human body thermal variations using unsupervised clustering

    Get PDF
    The presented approach addresses a review of the overheating that occurs during radiological examinations, such as magnetic resonance imaging, and a series of thermal experiments to determine a thermally suitable fabric material that should be used for radiological gowns. Moreover, an automatic system for detecting and tracking of the thermal fluctuation is presented. It applies hue-saturated-value-based kernelled k-means clustering, which initializes and controls the points that lie on the region-of-interest (ROI) boundary. Afterward, a particle filter tracks the targeted ROI during the video sequence independently of previous locations of overheating spots. The proposed approach was tested during experiments and under conditions very similar to those used during real radiology exams. Six subjects have voluntarily participated in these experiments. To simulate the hot spots occurring during radiology, a controllable heat source was utilized near the subjectโ€™s body. The results indicate promising accuracy for the proposed approach to track hot spots. Some approximations were used regarding the transmittance of the atmosphere, and emissivity of the fabric could be neglected because of the independence of the proposed approach for these parameters. The approach can track the heating spots continuously and correctly, even for moving subjects, and provides considerable robustness against motion artifact, which occurs during most medical radiology procedures
    • โ€ฆ
    corecore