1,367 research outputs found

    Hierarchical error estimates for the energy functional in obstacle problems

    Get PDF
    We present a hierarchical a posteriori error analysis for the minimum value of the energy functional in symmetric obstacle problems. The main result is that the error in the energy minimum is, up to oscillation terms, equivalent to an appropriate hierarchical estimator. The proof does not invoke any saturation assumption. We even show that small oscillation implies a related saturation assumption. In addition, we prove efficiency and reliability of an a posteriori estimate of the discretization error and thereby cast some light on the theoretical understanding of previous hierarchical estimators. Finally, we illustrate our theoretical results by numerical computations

    An a posteriori analysis of C\u3csup\u3e0\u3c/sup\u3e interior penalty methods for the obstacle problem of clamped Kirchhoff plates

    Get PDF
    We develop an a posteriori analysis of C interior penalty methods for the displacement obstacle problem of clamped Kirchhoff plates. We show that a residual based error estimator originally designed for C interior penalty methods for the boundary value problem of clamped Kirchhoff plates can also be used for the obstacle problem. We obtain reliability and efficiency estimates for the error estimator and introduce an adaptive algorithm based on this error estimator. Numerical results indicate that the performance of the adaptive algorithm is optimal for both quadratic and cubic C interior penalty methods. 0 0

    Aspects of guaranteed error control in CPDEs

    Get PDF
    Whenever numerical algorithms are employed for a reliable computational forecast, they need to allow for an error control in the final quantity of interest. The discretisation error control is of some particular importance in computational PDEs (CPDEs) where guaranteed upper error bounds (GUB) are of vital relevance. After a quick overview over energy norm error control in second-order elliptic PDEs, this paper focuses on three particular aspects. First, the variational crimes from a nonconforming finite element discretisation and guaranteed error bounds in the discrete norm with improved postprocessing of the GUB. Second, the reliable approximation of the discretisation error on curved boundaries and, finally, the reliable bounds of the error with respect to some goal-functional, namely, the error in the approximation of the directional derivative at a given point
    • …
    corecore