52 research outputs found

    Performance of direct-oversampling correlator-type receivers in chaos-based DS-CDMA systems over frequency non-selective fading channels

    Get PDF
    In this paper, we present a study on the performance of direct-oversampling correlator-type receivers in chaos-based direct-sequence code division multiple access systems over frequency non-selective fading channels. At the input, the received signal is sampled at a sampling rate higher than the chip rate. This oversampling step is used to precisely determine the delayed-signal components from multipath fading channels, which can be combined together by a correlator for the sake of increasing the SNR at its output. The main advantage of using direct-oversampling correlator-type receivers is not only their low energy consumption due to their simple structure, but also their ability to exploit the non-selective fading characteristic of multipath channels to improve the overall system performance in scenarios with limited data speeds and low energy requirements, such as low-rate wireless personal area networks. Mathematical models in discrete-time domain for the conventional transmitting side with multiple access operation, the generalized non-selective Rayleigh fading channel, and the proposed receiver are provided and described. A rough theoretical bit-error-rate (BER) expression is first derived by means of Gaussian approximation. We then define the main component in the expression and build its probability mass function through numerical computation. The final BER estimation is carried out by integrating the rough expression over possible discrete values of the PFM. In order to validate our findings, PC simulation is performed and simulated performance is compared with the corresponding estimated one. Obtained results show that the system performance get better with the increment of the number of paths in the channel.Peer ReviewedPostprint (author's final draft

    An Oversampling-based Correlator-type Receiver for DCSK Communication Systems Over Generalized Flat Rayleigh Fading Channels

    Get PDF
    This paper proposes an oversampling-based correlator-type receiver for Differential Chaos-shift Keying (DCSK) communication systems, which can exploit the flat-fading characteristic of multipath channels in order to improve the system performance. At the receiver, the incoming signal is sampled with a sampling rate higher than chip rate before feeding to a correlator. This oversampling step aims to specifically determine delayed-signal components from fading multipath channels, which can be combined together by the correlator in order to increase the ratio of signal-to-noise at its output. In particular, the performance of the proposed receiver is investigated by means of a generalized flat Rayleigh fading channel which has one primary path (i.e., the path having the shortest transmission period) and multiple secondary paths (i.e., the other remaining paths with delays). Mathematical models in discrete-time domain for the conventional transmitter, generalized channel, and proposed receiver are proposed and analyzed. The theoretical bit-error-rate (BER) expression is first derived and then distribution histogram for the ratio of variable bit energy to noise power spectral density is computed. The BER performance is finally estimated by integrating the BER expression over all possible values of the histogram. Numerical simulations with specific parameters are carried out and then simulated performances are shown in comparison to estimated ones. Obtained results point out that the system performance is significantly improved when the number of secondary paths increases

    Non-Coherent UWB Communications

    Get PDF

    High-performance signal acquisition algorithms for wireless communications receivers

    Get PDF
    Due to the uncertainties introduced by the propagation channel, and RF and mixed signal circuits imperfections, digital communication receivers require efficient and robust signal acquisition algorithms for timing and carrier recovery, and interfer- ence rejection. The main theme of this work is the development of efficient and robust signal synchronization and interference rejection schemes for narrowband, wideband and ultra wideband communications systems. A series of novel signal acquisition schemes together with their performance analysis and comparisons with existing state-of-the- art results are introduced. The design effort is first focused on narrowband systems, and then on wideband and ultra wideband systems. For single carrier modulated narrowband systems, it is found that conventional timing recovery schemes present low efficiency, e.g., certain feedback timing recov- ery schemes exhibit the so-called hang-up phenomenon, while another class of blind feedforward timing recovery schemes presents large self-noise. Based on a general re- search framework, we propose new anti-hangup algorithms and prefiltering techniques to speed up the feedback timing recovery and reduce the self-noise of feedforward tim- ing estimators, respectively. Orthogonal frequency division multiplexing (OFDM) technique is well suited for wideband wireless systems. However, OFDM receivers require high performance car-rier and timing synchronization. A new coarse synchronization scheme is proposed for efficient carrier frequency offset and timing acquisition. Also, a novel highly accurate decision-directed algorithm is proposed to track and compensate the residual phase and timing errors after the coarse synchronization step. Both theoretical analysis and computer simulations indicate that the proposed algorithms greatly improve the performance of OFDM receivers. The results of an in-depth study show that a narrowband interference (NBI) could cause serious performance loss in multiband OFDMbased ultra-wideband (UWB) sys- tems. A novel NBI mitigation scheme, based on a digital NBI detector and adaptive analog notch filter bank, is proposed to reduce the effects of NBI in UWB systems. Simulation results show that the proposed NBI mitigation scheme improves signifi- cantly the performance of a standard UWB receiver (this improvement manifests as a signal-to-noise ratio (SNR) gain of 9 dB)

    Power and performance trade-off in DS-CDMA receivers based on adaptive LMS-MMSE multi-user detector.

    Get PDF
    Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.Third generation cellular communication systems based on CDMA techniques have shown great scope for improvement in system capacity. Over the last decade, there has been significant interest in DS-CDMA detectors. The conventional detector, the optimal detector and a number of sub-optimal multi-user detectors (MUD) have been extensively analyzed in the literature. Recently, the reduction of power consumption in DS-CDMA systems has also become another important consideration in both system design and in implementation. In order to support wireless multimedia services, all CDMA-based systems for third generation systems have a large bandwidth and a high data rate, therefore the power consumed by the digital signal processor (DSP) is high. This thesis focuses on power consumption in the adaptive Minimum Mean Square Error (MMSE) detector which is based on the Least Mean Square (LMS) algorithm. This thesis presents a literature survey on MUD and adaptive filter algorithms. A system model of the quantized LMS-MMSE MUD is proposed and its performance is analyzed. The quantization effects in the finite precision LMS-MMSE adaptive MUD including the steady-state weight covariance, mean square error (MSE) and bit error rate (BER) versus wordlength of data and coefficient are investigated when both the data and filter coefficients are quantized. The effects of wordlength size on power consumption are investigated and the tradeoff between the power consumption and performance degradation and the optimal allocation of bits to data and to LMS coefficients under power constraint is presented
    • …
    corecore