12 research outputs found

    Averaged Anchoring of Decoupled Templates in a Tail-Energized Monoped

    Get PDF
    We refine and advance a notion of parallel composition to achieve for the first time a stability proof and empirical demonstration of a steady-state gait on a highly coupled 3DOF legged platform controlled by two simple (decoupled) feedback laws that provably stabilize in isolation two simple 1DOF mechanical subsystems. Specifically, we stabilize a limit cycle on a tailed monoped to excite sustained sagittal plane translational hopping energized by tail-pumping during stance. The constituent subsystems for which the controllers are nominally designed are: (i) a purely vertical bouncing mass (controlled by injecting energy into its springy shaft); and (ii) a purely tangential rimless wheel (controlled by adjusting the inter-spoke stepping angle).We introduce the use of averaging methods in legged locomotion to prove that this “parallel composition” of independent 1DOF controllers achieves an asymptotically stable closed-loop hybrid limit cycle for a dynamical system that approximates the 3DOF stance mechanics of our physical tailed monoped.We present experimental data demonstrating stability and close agreement between the motion of the physical hopping machine and numerical simulations of the (mathematically tractable) approximating model. More information: http://kodlab.seas.upenn.edu/Avik/AveragingTSLI

    The Penn Jerboa: A Platform for Exploring Parallel Composition of Templates

    Get PDF
    We have built a 12DOF, passive-compliant legged, tailed biped actuated by four brushless DC motors. We anticipate that this machine will achieve varied modes of quasistatic and dynamic balance, enabling a broad range of locomotion tasks including sitting, standing, walking, hopping, running, turning, leaping, and more. Achieving this diversity of behavior with a single under-actuated body, requires a correspondingly diverse array of controllers, motivating our interest in compositional techniques that promote mixing and reuse of a relatively few base constituents to achieve a combinatorially growing array of available choices. Here we report on the development of one important example of such a behavioral programming method, the construction of a novel monopedal sagittal plane hopping gait through parallel composition of four decoupled 1DOF base controllers. For this example behavior, the legs are locked in phase and the body is fastened to a boom to restrict motion to the sagittal plane. The platform's locomotion is powered by the hip motor that adjusts leg touchdown angle in flight and balance in stance, along with a tail motor that adjusts body shape in flight and drives energy into the passive leg shank spring during stance. The motor control signals arise from the application in parallel of four simple, completely decoupled 1DOF feedback laws that provably stabilize in isolation four corresponding 1DOF abstract reference plants. Each of these abstract 1DOF closed loop dynamics represents some simple but crucial specific component of the locomotion task at hand. We present a partial proof of correctness for this parallel composition of template reference systems along with data from the physical platform suggesting these templates are anchored as evidenced by the correspondence of their characteristic motions with a suitably transformed image of traces from the physical platform.Comment: Technical Report to Accompany: A. De and D. Koditschek, "Parallel composition of templates for tail-energized planar hopping," in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015. v2: Used plain latex article, correct gap radius and specific force/torque number

    Parallel Composition of Templates for Tail-Energized Planar Hopping

    Get PDF
    We have built a 4DOF tailed monoped that hops along a boom permitting free sagittal plane motion. This underactuated platform is powered by a hip motor that adjusts leg touchdown angle in flight and balance in stance, along with a tail motor that adjusts body shape in flight and drives energy into the passive leg shank spring during stance. The motor control signals arise from the application in parallel of four simple, completely decoupled 1DOF feedback laws that provably stabilize in isolation four corresponding 1DOF abstract reference plants. Each of these abstract 1DOF closedloopdynamicsrepresentssomesimplebutcrucialspecific component of the locomotion task at hand. We present a partial proof of correctness for this parallel composition of “template” reference systems along with data from the physical platform suggesting these templates are “anchored” as evidenced by the correspondence of their characteristic motions with a suitably transformed image of traces from the physical platform. For more information: http://kodlab.seas.upenn.edu/Avik/ICRA201

    Modular Hopping and Running via Parallel Composition

    Get PDF
    Though multi-functional robot hardware has been created, the complexity in its functionality has been constrained by a lack of algorithms that appropriately manage flexible and autonomous reconfiguration of interconnections to physical and behavioral components. Raibert pioneered a paradigm for the synthesis of planar hopping using a composition of ``parts\u27\u27: controlled vertical hopping, controlled forward speed, and controlled body attitude. Such reduced degree-of-freedom compositions also seem to appear in running animals across several orders of magnitude of scale. Dynamical systems theory can offer a formal representation of such reductions in terms of ``anchored templates,\u27\u27 respecting which Raibert\u27s empirical synthesis (and the animals\u27 empirical performance) can be posed as a parallel composition. However, the orthodox notion (attracting invariant submanifold with restriction dynamics conjugate to a template system) has only been formally synthesized in a few isolated instances in engineering (juggling, brachiating, hexapedal running robots, etc.) and formally observed in biology only in similarly limited contexts. In order to bring Raibert\u27s 1980\u27s work into the 21st century and out of the laboratory, we design a new family of one-, two-, and four-legged robots with high power density, transparency, and control bandwidth. On these platforms, we demonstrate a growing collection of {\{body, behavior}\} pairs that successfully embody dynamical running / hopping ``gaits\u27\u27 specified using compositions of a few templates, with few parameters and a great deal of empirical robustness. We aim for and report substantial advances toward a formal notion of parallel composition---embodied behaviors that are correct by design even in the presence of nefarious coupling and perturbation---using a new analytical tool (hybrid dynamical averaging). With ideas of verifiable behavioral modularity and a firm understanding of the hardware tools required to implement them, we are closer to identifying the components required to flexibly program the exchange of work between machines and their environment. Knowing how to combine and sequence stable basins to solve arbitrarily complex tasks will result in improved foundations for robotics as it goes from ad-hoc practice to science (with predictive theories) in the next few decades

    A hybrid dynamical extension of averaging and its application to the analysis of legged gait stability

    Get PDF
    We extend a smooth dynamical systems averaging technique to a class of hybrid systems with a limit cycle that is particularly relevant to the synthesis of stable legged gaits. After introducing a definition of hybrid averageability sufficient to recover the classical result, we illustrate its applicability by analysis of first a one-legged and then a two-legged hopping model. These abstract systems prepare the ground for the analysis of a significantly more complicated two legged model—a new template for quadrupedal running to be analyzed and implemented on a physical robot in a companion paper. We conclude with some rather more speculative remarks concerning the prospects for further extension and generalization of these ideas

    Vertical hopper compositions for preflexive and feedback-stabilized quadrupedal bounding, pacing, pronking, and trotting

    Get PDF
    This paper applies an extension of classical averaging methods to hybrid dynamical systems, thereby achieving formally specified, physically effective and robust instances of all virtual bipedal gaits on a quadrupedal robot. Gait specification takes the form of a three parameter family of coupling rules mathematically shown to stabilize limit cycles in a low degree of freedom template: an abstracted pair of vertical hoppers whose relative phase locking encodes the desired physical leg patterns. These coupling rules produce the desired gaits when appropriately applied to the physical robot. The formal analysis reveals a distinct set of morphological regimes determined by the distribution of the body’s inertia within which particular phase relationships are naturally locked with no need for feedback stabilization (or, if undesired, must be countermanded by the appropriate feedback), and these regimes are shown empirically to analogously govern the physical machine as well. In addition to the mathematical stability analysis and data from physical experiments we summarize a number of extensive numerical studies that explore the relationship between the simple template and its more complicated anchoring body models. For more information: Kod*la

    What is Robotics: Why Do We Need It and How Can We Get It?

    Get PDF
    Robotics is an emerging synthetic science concerned with programming work. Robot technologies are quickly advancing beyond the insights of the existing science. More secure intellectual foundations will be required to achieve better, more reliable and safer capabilities as their penetration into society deepens. Presently missing foundations include the identification of fundamental physical limits, the development of new dynamical systems theory and the invention of physically grounded programming languages. The new discipline needs a departmental home in the universities which it can justify both intellectually and by its capacity to attract new diverse populations inspired by the age old human fascination with robots. For more information: Kod*la

    Averaged Anchoring of Decoupled Templates in a Tail-Energized Monoped

    No full text
    https://repository.upenn.edu/ese_images/1027/thumbnail.jp
    corecore