144,048 research outputs found

    Largest sparse subgraphs of random graphs

    Get PDF
    For the Erd\H{o}s-R\'enyi random graph G(n,p), we give a precise asymptotic formula for the size of a largest vertex subset in G(n,p) that induces a subgraph with average degree at most t, provided that p = p(n) is not too small and t = t(n) is not too large. In the case of fixed t and p, we find that this value is asymptotically almost surely concentrated on at most two explicitly given points. This generalises a result on the independence number of random graphs. For both the upper and lower bounds, we rely on large deviations inequalities for the binomial distribution.Comment: 15 page

    Algorithms and lower bounds for de Morgan formulas of low-communication leaf gates

    Get PDF
    The class FORMULA[s]GFORMULA[s] \circ \mathcal{G} consists of Boolean functions computable by size-ss de Morgan formulas whose leaves are any Boolean functions from a class G\mathcal{G}. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99]GFORMULA[n^{1.99}]\circ \mathcal{G}, for classes G\mathcal{G} of functions with low communication complexity. Let R(k)(G)R^{(k)}(\mathcal{G}) be the maximum kk-party NOF randomized communication complexity of G\mathcal{G}. We show: (1) The Generalized Inner Product function GIPnkGIP^k_n cannot be computed in FORMULA[s]GFORMULA[s]\circ \mathcal{G} on more than 1/2+ε1/2+\varepsilon fraction of inputs for s=o ⁣(n2(k4kR(k)(G)log(n/ε)log(1/ε))2). s = o \! \left ( \frac{n^2}{ \left(k \cdot 4^k \cdot {R}^{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right)^{2}} \right). As a corollary, we get an average-case lower bound for GIPnkGIP^k_n against FORMULA[n1.99]PTFk1FORMULA[n^{1.99}]\circ PTF^{k-1}. (2) There is a PRG of seed length n/2+O(sR(2)(G)log(s/ε)log(1/ε))n/2 + O\left(\sqrt{s} \cdot R^{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right) that ε\varepsilon-fools FORMULA[s]GFORMULA[s] \circ \mathcal{G}. For FORMULA[s]LTFFORMULA[s] \circ LTF, we get the better seed length O(n1/2s1/4log(n)log(n/ε))O\left(n^{1/2}\cdot s^{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right). This gives the first non-trivial PRG (with seed length o(n)o(n)) for intersections of nn half-spaces in the regime where ε1/n\varepsilon \leq 1/n. (3) There is a randomized 2nt2^{n-t}-time #\#SAT algorithm for FORMULA[s]GFORMULA[s] \circ \mathcal{G}, where t=Ω(nslog2(s)R(2)(G))1/2.t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log^2(s)\cdot R^{(2)}(\mathcal{G})}\right)^{1/2}. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]LTFFORMULA[n^{1.99}]\circ LTF. (4) The Minimum Circuit Size Problem is not in FORMULA[n1.99]XORFORMULA[n^{1.99}]\circ XOR. On the algorithmic side, we show that FORMULA[n1.99]XORFORMULA[n^{1.99}] \circ XOR can be PAC-learned in time 2O(n/logn)2^{O(n/\log n)}

    Dynamic Boolean Formula Evaluation

    Get PDF
    We present a linear space data structure for Dynamic Evaluation of k-CNF Boolean Formulas which achieves O(m^{1-1/k}) query and variable update time where m is the number of clauses in the formula and clauses are of size at most a constant k. Our algorithm is additionally able to count the total number of satisfied clauses. We then show how this data structure can be parallelized in the PRAM model to achieve O(log m) span (i.e. parallel time) and still O(m^{1-1/k}) work. This parallel algorithm works in the stronger Binary Fork model. We then give a series of lower bounds on the problem including an average-case result showing the lower bounds hold even when the updates to the variables are chosen at random. Specifically, a reduction from k-Clique shows that dynamically counting the number of satisfied clauses takes time at least n^{(2?-3)/6 ?{2k} -1 -o(?k)}, where 2 ? ? < 2.38 is the matrix multiplication constant. We show the Combinatorial k-Clique Hypothesis implies a lower bound of m^{(1-k^{-1/2})(1-o(1))} which suggests our algorithm is close to optimal without involving Matrix Multiplication or new techniques. We next give an average-case reduction to k-clique showing the prior lower bounds hold even when the updates are chosen at random. We use our conditional lower bound to show any Binary Fork algorithm solving these problems requires at least ?(log m) span, which is tight against our algorithm in this model. Finally, we give an unconditional linear space lower bound for Dynamic k-CNF Boolean Formula Evaluation

    The Orthogonal Vectors Conjecture for Branching Programs and Formulas

    Get PDF
    In the Orthogonal Vectors (OV) problem, we wish to determine if there is an orthogonal pair of vectors among n Boolean vectors in d dimensions. The OV Conjecture (OVC) posits that OV requires n^{2-o(1)} time to solve, for all d=omega(log n). Assuming the OVC, optimal time lower bounds have been proved for many prominent problems in P, such as Edit Distance, Frechet Distance, Longest Common Subsequence, and approximating the diameter of a graph. We prove that OVC is true in several computational models of interest: - For all sufficiently large n and d, OV for n vectors in {0,1}^d has branching program complexity Theta~(n * min(n,2^d)). In particular, the lower and upper bounds match up to polylog factors. - OV has Boolean formula complexity Theta~(n * min(n,2^d)), over all complete bases of O(1) fan-in. - OV requires Theta~(n * min(n,2^d)) wires, in formulas comprised of gates computing arbitrary symmetric functions of unbounded fan-in. Our lower bounds basically match the best known (quadratic) lower bounds for any explicit function in those models. Analogous lower bounds hold for many related problems shown to be hard under OVC, such as Batch Partial Match, Batch Subset Queries, and Batch Hamming Nearest Neighbors, all of which have very succinct reductions to OV. The proofs use a certain kind of input restriction that is different from typical random restrictions where variables are assigned independently. We give a sense in which independent random restrictions cannot be used to show hardness, in that OVC is false in the "average case" even for AC^0 formulas: For all p in (0,1) there is a delta_p > 0 such that for every n and d, OV instances with input bits independently set to 1 with probability p (and 0 otherwise) can be solved with AC^0 formulas of O(n^{2-delta_p}) size, on all but a o_n(1) fraction of instances. Moreover, lim_{p - > 1}delta_p = 1

    Quantization Bounds on Grassmann Manifolds and Applications to MIMO Communications

    Full text link
    This paper considers the quantization problem on the Grassmann manifold \mathcal{G}_{n,p}, the set of all p-dimensional planes (through the origin) in the n-dimensional Euclidean space. The chief result is a closed-form formula for the volume of a metric ball in the Grassmann manifold when the radius is sufficiently small. This volume formula holds for Grassmann manifolds with arbitrary dimension n and p, while previous results pertained only to p=1, or a fixed p with asymptotically large n. Based on this result, several quantization bounds are derived for sphere packing and rate distortion tradeoff. We establish asymptotically equivalent lower and upper bounds for the rate distortion tradeoff. Since the upper bound is derived by constructing random codes, this result implies that the random codes are asymptotically optimal. The above results are also extended to the more general case, in which \mathcal{G}_{n,q} is quantized through a code in \mathcal{G}_{n,p}, where p and q are not necessarily the same. Finally, we discuss some applications of the derived results to multi-antenna communication systems.Comment: 26 pages, 7 figures, submitted to IEEE Transactions on Information Theory in Aug, 200
    corecore