668 research outputs found

    Average-case Hardness of RIP Certification

    Get PDF
    The restricted isometry property (RIP) for design matrices gives guarantees for optimal recovery in sparse linear models. It is of high interest in compressed sensing and statistical learning. This property is particularly important for computationally efficient recovery methods. As a consequence, even though it is in general NP-hard to check that RIP holds, there have been substantial efforts to find tractable proxies for it. These would allow the construction of RIP matrices and the polynomial-time verification of RIP given an arbitrary matrix. We consider the framework of average-case certifiers, that never wrongly declare that a matrix is RIP, while being often correct for random instances. While there are such functions which are tractable in a suboptimal parameter regime, we show that this is a computationally hard task in any better regime. Our results are based on a new, weaker assumption on the problem of detecting dense subgraphs

    Hidden cliques and the certification of the restricted isometry property

    Get PDF
    International audienceCompressed sensing is a technique for finding sparse solutions to underdetermined linear systems. This technique relies on properties of the sensing matrix such as the restricted isometry property. Sensing matrices that satisfy this property with optimal parameters are mainly obtained via probabilistic arguments. Deciding whether a given matrix satisfies the restricted isometry property is a non-trivial computational problem. Indeed, we show in this paper that restricted isometry parameters cannot be approximated in polynomial time within any constant factor under the assumption that the hidden clique problem is hard. Moreover, on the positive side we propose an improvement on the brute-force enumeration algorithm for checking the restricted isometry property

    Computational Hardness of Certifying Bounds on Constrained PCA Problems

    Get PDF
    Given a random n×n symmetric matrix W drawn from the Gaussian orthogonal ensemble (GOE), we consider the problem of certifying an upper bound on the maximum value of the quadratic form x⊤Wx over all vectors x in a constraint set S⊂Rn. For a certain class of normalized constraint sets S we show that, conditional on certain complexity-theoretic assumptions, there is no polynomial-time algorithm certifying a better upper bound than the largest eigenvalue of W. A notable special case included in our results is the hypercube S={±1/n−−√}n, which corresponds to the problem of certifying bounds on the Hamiltonian of the Sherrington-Kirkpatrick spin glass model from statistical physics. Our proof proceeds in two steps. First, we give a reduction from the detection problem in the negatively-spiked Wishart model to the above certification problem. We then give evidence that this Wishart detection problem is computationally hard below the classical spectral threshold, by showing that no low-degree polynomial can (in expectation) distinguish the spiked and unspiked models. This method for identifying computational thresholds was proposed in a sequence of recent works on the sum-of-squares hierarchy, and is believed to be correct for a large class of problems. Our proof can be seen as constructing a distribution over symmetric matrices that appears computationally indistinguishable from the GOE, yet is supported on matrices whose maximum quadratic form over x∈S is much larger than that of a GOE matrix.ISSN:1868-896

    Spectral methods and computational trade-offs in high-dimensional statistical inference

    Get PDF
    Spectral methods have become increasingly popular in designing fast algorithms for modern highdimensional datasets. This thesis looks at several problems in which spectral methods play a central role. In some cases, we also show that such procedures have essentially the best performance among all randomised polynomial time algorithms by exhibiting statistical and computational trade-offs in those problems. In the first chapter, we prove a useful variant of the well-known Davis{Kahan theorem, which is a spectral perturbation result that allows us to bound of the distance between population eigenspaces and their sample versions. We then propose a semi-definite programming algorithm for the sparse principal component analysis (PCA) problem, and analyse its theoretical performance using the perturbation bounds we derived earlier. It turns out that the parameter regime in which our estimator is consistent is strictly smaller than the consistency regime of a minimax optimal (yet computationally intractable) estimator. We show through reduction from a well-known hard problem in computational complexity theory that the difference in consistency regimes is unavoidable for any randomised polynomial time estimator, hence revealing subtle statistical and computational trade-offs in this problem. Such computational trade-offs also exist in the problem of restricted isometry certification. Certifiers for restricted isometry properties can be used to construct design matrices for sparse linear regression problems. Similar to the sparse PCA problem, we show that there is also an intrinsic gap between the class of matrices certifiable using unrestricted algorithms and using polynomial time algorithms. Finally, we consider the problem of high-dimensional changepoint estimation, where we estimate the time of change in the mean of a high-dimensional time series with piecewise constant mean structure. Motivated by real world applications, we assume that changes only occur in a sparse subset of all coordinates. We apply a variant of the semi-definite programming algorithm in sparse PCA to aggregate the signals across different coordinates in a near optimal way so as to estimate the changepoint location as accurately as possible. Our statistical procedure shows superior performance compared to existing methods in this problem.St John's College and Cambridge Overseas Trus

    Semi-device-dependent blind quantum tomography

    Get PDF
    Extracting tomographic information about quantum states is a crucial task in the quest towards devising high-precision quantum devices. Current schemes typically require measurement devices for tomography that are a priori calibrated to a high precision. Ironically, the accuracy of the measurement calibration is fundamentally limited by the accuracy of state preparation, establishing a vicious cycle. Here, we prove that this cycle can be broken and the fundamental dependence on the measurement devices significantly relaxed. We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind tomography scheme with a classically efficient post-processing algorithm. We further improve the efficiency of our scheme by making use of the sparse structure of the calibrations. This is achieved by relaxing the blind quantum tomography problem to the task of de-mixing a sparse sum of low-rank quantum states. Building on techniques from model-based compressed sensing, we prove that the proposed algorithm recovers a low-rank quantum state and the calibration provided that the measurement model exhibits a restricted isometry property. For generic measurements, we show that our algorithm requires a close-to-optimal number measurement settings for solving the blind tomography task. Complementing these conceptual and mathematical insights, we numerically demonstrate that blind quantum tomography is possible by exploiting low-rank assumptions in a practical setting inspired by an implementation of trapped ions using constrained alternating optimization.Comment: 22 pages, 8 Figure
    • …
    corecore