3,320 research outputs found

    Average-case analysis of perfect sorting by reversals (Journal Version)

    Full text link
    Perfect sorting by reversals, a problem originating in computational genomics, is the process of sorting a signed permutation to either the identity or to the reversed identity permutation, by a sequence of reversals that do not break any common interval. B\'erard et al. (2007) make use of strong interval trees to describe an algorithm for sorting signed permutations by reversals. Combinatorial properties of this family of trees are essential to the algorithm analysis. Here, we use the expected value of certain tree parameters to prove that the average run-time of the algorithm is at worst, polynomial, and additionally, for sufficiently long permutations, the sorting algorithm runs in polynomial time with probability one. Furthermore, our analysis of the subclass of commuting scenarios yields precise results on the average length of a reversal, and the average number of reversals.Comment: A preliminary version of this work appeared in the proceedings of Combinatorial Pattern Matching (CPM) 2009. See arXiv:0901.2847; Discrete Mathematics, Algorithms and Applications, vol. 3(3), 201

    The distribution of cycles in breakpoint graphs of signed permutations

    Get PDF
    Breakpoint graphs are ubiquitous structures in the field of genome rearrangements. Their cycle decomposition has proved useful in computing and bounding many measures of (dis)similarity between genomes, and studying the distribution of those cycles is therefore critical to gaining insight on the distributions of the genomic distances that rely on it. We extend here the work initiated by Doignon and Labarre, who enumerated unsigned permutations whose breakpoint graph contains kk cycles, to signed permutations, and prove explicit formulas for computing the expected value and the variance of the corresponding distributions, both in the unsigned case and in the signed case. We also compare these distributions to those of several well-studied distances, emphasising the cases where approximations obtained in this way stand out. Finally, we show how our results can be used to derive simpler proofs of other previously known results

    MULTI CRITERIA DECISION MAKING MODELS: AN OVERVIEW ON ELECTRE METHODS

    Get PDF
    In portfolio analysis, there are a few models that can be used. Therefore, the aim of this paper is to make an overview on multi criteria decision making models, in particular, on ELECTRE methods. We discuss the different versions of ELECTRE, which exist and why they exist. So, when speaking about ELECTRE methods structure, we have to consider two main procedures: construction of one or several outranking relation(s) procedure, and exploitation procedure. In the exploitation procedure, recommendations are elaborated from the results obtained in the first phase. The nature of the recommendation depends on the problematic: choosing, ranking or sorting. Each method is characterized by its construction and exploitation procedure. For choice problem, we can apply ELECTRE I, ELECTRE Iv, and ELECTRE IS; for ranking problem, we can apply ELECTRE II, ELECTRE III, ELECTRE IV and ELECTRE-SS; and for sorting problem we can apply ELECTRE TRI. Finally, some failings on ELECTRE methods assumptions are discussed, for instance, rank reversals. So, when analyzing portfolio management decision problem, the literature suggests AHP method and PROMETHEE family.CAPM; decision problem; multi criteria decision making models; ELECTRE family; ELECTRE rank reversals

    Assignment reversals : trade, skill allocation and wage inequality

    Get PDF
    The allocation of skilled labor across industries shapes inter-industry wage differences and wage inequality. This paper shows the ranking of industries by workforce skill differs between developed and developing countries and develops a multi-sector assignment model to understand the causes and consequences of this fact. Heterogeneous agents leverage their ability through their span of control over an homogeneous input. In equilibrium, higher skill agents sort into sectors where the cost per efficiency unit of input is lower. Consequently, skill allocation is endogenous to country-sector specific variation in input productivity and costs and when the ranking of sectors by effective input costs differs across countries there is an assignment reversal. Assignment reversals between North and South have novel implications for how trade affects wages because they imply the Stolper-Samuelson theorem does not hold. Instead, each country has a comparative advantage in its high skill sector and output trade integration causes the relative wage of high skill workers, and wage inequality within the high skill sector, to increase in both countrie

    Assignment reversals : trade, skill allocation and wage inequality

    Get PDF
    The allocation of skilled labor across industries shapes inter-industry wage differences and wage inequality. This paper shows the ranking of industries by workforce skill differs between developed and developing countries and develops a multi-sector assignment model to understand the causes and consequences of this fact. Heterogeneous agents leverage their ability through their span of control over an homogeneous input. In equilibrium, higher skill agents sort into sectors where the cost per efficiency unit of input is lower. Consequently, skill allocation is endogenous to country-sector specific variation in input productivity and costs and when the ranking of sectors by effective input costs differs across countries there is an assignment reversal. Assignment reversals between North and South have novel implications for how trade affects wages because they imply the Stolper-Samuelson theorem does not hold. Instead, each country has a comparative advantage in its high skill sector and output trade integration causes the relative wage of high skill workers, and wage inequality within the high skill sector, to increase in both countrie

    Set-Switching and Learning Transfer

    Get PDF
    In this experiment I investigated the relationship between set-switching and transfer learning, both of which presumably invoke executive functioning (EF), which may in turn be correlated with intelligence. Set-switching was measured by a computerized version of the Wisconsin Card Sort Task. Another computer task was written to measure learning-transfer ability. The data indicate little correlation between the ability to transfer learning and the capacity for set-switching. That is, these abilities may draw from independent cognitive mechanisms. The major difference may be requirement to utilize previous learning in a new way in the learning-transfer task

    CMBPol Mission Concept Study: Foreground Science Knowledge and Prospects

    Get PDF
    We report on our knowledge of Galactic foregrounds, as well as on how a CMB satellite mission aiming at detecting a primordial B-mode signal (CMBPol) will contribute to improving it. We review the observational and analysis techniques used to constrain the structure of the Galactic magnetic field, whose presence is responsible for the polarization of Galactic emissions. Although our current understanding of the magnetized interstellar medium is somewhat limited, dramatic improvements in our knowledge of its properties are expected by the time CMBPol flies. Thanks to high resolution and high sensitivity instruments observing the whole sky at frequencies between 30 GHz and 850 GHz, CMBPol will not only improve this picture by observing the synchrotron emission from our galaxy, but also help constrain dust models. Polarized emission from interstellar dust indeed dominates over any other signal in CMBPol's highest frequency channels. Observations at these wavelengths, combined with ground-based studies of starlight polarization, will therefore enable us to improve our understanding of dust properties and of the mechanism(s) responsible for the alignment of dust grains with the Galactic magnetic field. CMBPol will also shed new light on observations that are presently not well understood. Morphological studies of anomalous dust and synchrotron emissions will indeed constrain their natures and properties, while searching for fluctuations in the emission from heliospheric dust will test our understanding of the circumheliospheric interstellar medium. Finally, acquiring more information on the properties of extra-Galactic sources will be necessary in order to maximize the cosmological constraints extracted from CMBPol's observations of CMB lensing. (abridged)Comment: 43 pages, 7 figures, 2 table

    Gene order rearrangement methods for the reconstruction of phylogeny

    Get PDF
    The study of phylogeny, i.e. the evolutionary history of species, is a central problem in biology and a key for understanding characteristics of contemporary species. Many problems in this area can be formulated as combinatorial optimisation problems which makes it particularly interesting for computer scientists. The reconstruction of the phylogeny of species can be based on various kinds of data, e.g. morphological properties or characteristics of the genetic information of the species. Maximum parsimony is a popular and widely used method for phylogenetic reconstruction aiming for an explanation of the observed data requiring the least evolutionary changes. A certain property of the genetic information gained much interest for the reconstruction of phylogeny in recent time: the organisation of the genomes of species, i.e. the arrangement of the genes on the chromosomes. But the idea to reconstruct phylogenetic information from gene arrangements has a long history. In Dobzhansky and Sturtevant (1938) it was already pointed out that “a comparison of the different gene arrangements in the same chromosome may, in certain cases, throw light on the historical relationships of these structures, and consequently on the history of the species as a whole”. This kind of data is promising for the study of deep evolutionary relationships because gene arrangements are believed to evolve slowly (Rokas and Holland, 2000). This seems to be the case especially for mitochondrial genomes which are available for a wide range of species (Boore, 1999). The development of methods for the reconstruction of phylogeny from gene arrangement data has made considerable progress during the last years. Prominent examples are the computation of parsimonious evolutionary scenarios, i.e. a shortest sequence of rearrangements transforming one arrangement of genes into another or the length of such a minimal scenario (Hannenhalli and Pevzner, 1995b; Sankoff, 1992; Watterson et al., 1982); the reconstruction of parsimonious phylogenetic trees from gene arrangement data (Bader et al., 2008; Bernt et al., 2007b; Bourque and Pevzner, 2002; Moret et al., 2002a); or the computation of the similarities of gene arrangements (Bergeron et al., 2008a; Heber et al., 2009). 1 1 Introduction The central theme of this work is to provide efficient algorithms for modified versions of fundamental genome rearrangement problems using more plausible rearrangement models. Two types of modified rearrangement models are explored. The first type is to restrict the set of allowed rearrangements as follows. It can be observed that certain groups of genes are preserved during evolution. This may be caused by functional constraints which prevented the destruction (Lathe et al., 2000; Sémon and Duret, 2006; Xie et al., 2003), certain properties of the rearrangements which shaped the gene orders (Eisen et al., 2000; Sankoff, 2002; Tillier and Collins, 2000), or just because no destructive rearrangement happened since the speciation of the gene orders. It can be assumed that gene groups, found in all studied gene orders, are not acquired independently. Accordingly, these gene groups should be preserved in plausible reconstructions of the course of evolution, in particular the gene groups should be present in the reconstructed putative ancestral gene orders. This can be achieved by restricting the set of rearrangements, which are allowed for the reconstruction, to those which preserve the gene groups of the given gene orders. Since it is difficult to determine functionally what a gene group is, it has been proposed to consider common combinatorial structures of the gene orders as gene groups (Marcotte et al., 1999; Overbeek et al., 1999). The second considered modification of the rearrangement model is extending the set of allowed rearrangement types. Different types of rearrangement operations have shuffled the gene orders during evolution. It should be attempted to use the same set of rearrangement operations for the reconstruction otherwise distorted or even wrong phylogenetic conclusions may be obtained in the worst case. Both possibilities have been considered for certain rearrangement problems before. Restricted sets of allowed rearrangements have been used successfully for the computation of parsimonious rearrangement scenarios consisting of inversions only where the gene groups are identified as common intervals (Bérard et al., 2007; Figeac and Varré, 2004). Extending the set of allowed rearrangement operations is a delicate task. On the one hand it is unknown which rearrangements have to be regarded because this is part of the phylogeny to be discovered. On the other hand, efficient exact rearrangement methods including several operations are still rare, in particular when transpositions should be included. For example, the problem to compute shortest rearrangement scenarios including transpositions is still of unknown computational complexity. Currently, only efficient approximation algorithms are known (e.g. Bader and Ohlebusch, 2007; Elias and Hartman, 2006). Two problems have been studied with respect to one or even both of these possibilities in the scope of this work. The first one is the inversion median problem. Given the gene orders of some taxa, this problem asks for potential ancestral gene orders such that the corresponding inversion scenario is parsimonious, i.e. has a minimum length. Solving this problem is an essential component 2 of algorithms for computing phylogenetic trees from gene arrangements (Bourque and Pevzner, 2002; Moret et al., 2002a, 2001). The unconstrained inversion median problem is NP-hard (Caprara, 2003). In Chapter 3 the inversion median problem is studied under the additional constraint to preserve gene groups of the input gene orders. Common intervals, i.e. sets of genes that appear consecutively in the gene orders, are used for modelling gene groups. The problem of finding such ancestral gene orders is called the preserving inversion median problem. Already the problem of finding a shortest inversion scenario for two gene orders is NP-hard (Figeac and Varré, 2004). Mitochondrial gene orders are a rich source for phylogenetic investigations because they are known for more than 1 000 species. Four rearrangement operations are reported at least in the literature to be relevant for the study of mitochondrial gene order evolution (Boore, 1999): That is inversions, transpositions, inverse transpositions, and tandem duplication random loss (TDRL). Efficient methods for a plausible reconstruction of genome rearrangements for mitochondrial gene orders using all four operations are presented in Chapter 4. An important rearrangement operation, in particular for the study of mitochondrial gene orders, is the tandem duplication random loss operation (e.g. Boore, 2000; Mauro et al., 2006). This rearrangement duplicates a part of a gene order followed by the random loss of one of the redundant copies of each gene. The gene order is rearranged depending on which copy is lost. This rearrangement should be regarded for reconstructing phylogeny from gene order data. But the properties of this rearrangement operation have rarely been studied (Bouvel and Rossin, 2009; Chaudhuri et al., 2006). The combinatorial properties of the TDRL operation are studied in Chapter 5. The enumeration and counting of sorting TDRLs, that is TDRL operations reducing the distance, is studied in particular. Closed formulas for computing the number of sorting TDRLs and methods for the enumeration are presented. Furthermore, TDRLs are one of the operations considered in Chapter 4. An interesting property of this rearrangement, distinguishing it from other rearrangements, is its asymmetry. That is the effects of a single TDRL can (in the most cases) not be reversed with a single TDRL. The use of this property for phylogeny reconstruction is studied in Section 4.3. This thesis is structured as follows. The existing approaches obeying similar types of modified rearrangement models as well as important concepts and computational methods to related problems are reviewed in Chapter 2. The combinatorial structures of gene orders that have been proposed for identifying gene groups, in particular common intervals, as well as the computational approaches for their computation are reviewed in Section 2.2. Approaches for computing parsimonious pairwise rearrangement scenarios are outlined in Section 2.3. Methods for the computation genome rearrangement scenarios obeying biologically motivated constraints, as introduced above, are detailed in Section 2.4. The approaches for the inversion median problem are covered in Section 2.5. Methods for the reconstruction of phylogenetic trees from gene arrangement data are briefly outlined in Section 2.6.3 1 Introduction Chapter 3 introduces the new algorithms CIP, ECIP, and TCIP for solving the preserving inversion median problem. The efficiency of the algorithm is empirically studied for simulated as well as mitochondrial data. The description of algorithms CIP and ECIP is based on Bernt et al. (2006b). TCIP has been described in Bernt et al. (2007a, 2008b). But the theoretical foundation of TCIP is extended significantly within this work in order to allow for more than three input permutations. Gene order rearrangement methods that have been developed for the reconstruction of the phylogeny of mitochondrial gene orders are presented in the fourth chapter. The presented algorithm CREx computes rearrangement scenarios for pairs of gene orders. CREx regards the four types of rearrangement operations which are important for mitochondrial gene orders. Based on CREx the algorithm TreeREx for assigning rearrangement events to a given tree is developed. The quality of the CREx reconstructions is analysed in a large empirical study for simulated gene orders. The results of TreeREx are analysed for several mitochondrial data sets. Algorithms CREx and TreeREx have been published in Bernt et al. (2008a, 2007c). The analysis of the mitochondrial gene orders of Echinodermata was included in Perseke et al. (2008). Additionally, a new and simple method is presented to explore the potential of the CREx method. The new method is applied to the complete mitochondrial data set. The problem of enumerating and counting sorting TDRLs is studied in Chapter 5. The theoretical results are covered to a large extent by Bernt et al. (2009b). The missing combinatorial explanation for some of the presented formulas is given here for the first time. Therefor, a new method for the enumeration and counting of sorting TDRLs has been developed (Bernt et al., 2009a)

    Sobre modelos de rearranjo de genomas

    Get PDF
    Orientador: João MeidanisTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Rearranjo de genomas é o nome dado a eventos onde grandes blocos de DNA trocam de posição durante o processo evolutivo. Com a crescente disponibilidade de sequências completas de DNA, a análise desse tipo de eventos pode ser uma importante ferramenta para o entendimento da genômica evolutiva. Vários modelos matemáticos de rearranjo de genomas foram propostos ao longo dos últimos vinte anos. Nesta tese, desenvolvemos dois novos modelos. O primeiro foi proposto como uma definição alternativa ao conceito de distância de breakpoint. Essa distância é uma das mais simples medidas de rearranjo, mas ainda não há um consenso quanto à sua definição para o caso de genomas multi-cromossomais. Pevzner e Tesler deram uma definição em 2003 e Tannier et al. a definiram de forma diferente em 2008. Nesta tese, nós desenvolvemos uma outra alternativa, chamada de single-cut-or-join (SCJ). Nós mostramos que, no modelo SCJ, além da distância, vários problemas clássicos de rearranjo, como a mediana de rearranjo, genome halving e pequena parcimônia são fáceis, e apresentamos algoritmos polinomiais para eles. O segundo modelo que apresentamos é o formalismo algébrico por adjacências, uma extensão do formalismo algébrico proposto por Meidanis e Dias, que permite a modelagem de cromossomos lineares. Esta era a principal limitação do formalismo original, que só tratava de cromossomos circulares. Apresentamos algoritmos polinomiais para o cálculo da distância algébrica e também para encontrar cenários de rearranjo entre dois genomas. Também mostramos como calcular a distância algébrica através do grafo de adjacências, para facilitar a comparação com outras distâncias de rearranjo. Por fim, mostramos como modelar todas as operações clássicas de rearranjo de genomas utilizando o formalismo algébricoAbstract: Genome rearrangements are events where large blocks of DNA exchange places during evolution. With the growing availability of whole genome data, the analysis of these events can be a very important and promising tool for understanding evolutionary genomics. Several mathematical models of genome rearrangement have been proposed in the last 20 years. In this thesis, we propose two new rearrangement models. The first was introduced as an alternative definition of the breakpoint distance. The breakpoint distance is one of the most straightforward genome comparison measures, but when it comes to defining it precisely for multichromosomal genomes, there is more than one way to go about it. Pevzner and Tesler gave a definition in a 2003 paper, and Tannier et al. defined it differently in 2008. In this thesis we provide yet another alternative, calling it single-cut-or-join (SCJ). We show that several genome rearrangement problems, such as genome median, genome halving and small parsimony, become easy for SCJ, and provide polynomial time algorithms for them. The second model we introduce is the Adjacency Algebraic Theory, an extension of the Algebraic Formalism proposed by Meidanis and Dias that allows the modeling of linear chromosomes, the main limitation of the original formalism, which could deal with circular chromosomes only. We believe that the algebraic formalism is an interesting alternative for solving rearrangement problems, with a different perspective that could complement the more commonly used combinatorial graph-theoretic approach. We present polynomial time algorithms to compute the algebraic distance and find rearrangement scenarios between two genomes. We show how to compute the rearrangement distance from the adjacency graph, for an easier comparison with other rearrangement distances. Finally, we show how all classic rearrangement operations can be modeled using the algebraic theoryDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã
    corecore