41,986 research outputs found

    NP-hardness of circuit minimization for multi-output functions

    Get PDF
    Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n ? {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless ? = ??, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions

    New bounds on classical and quantum one-way communication complexity

    Get PDF
    In this paper we provide new bounds on classical and quantum distributional communication complexity in the two-party, one-way model of communication. In the classical model, our bound extends the well known upper bound of Kremer, Nisan and Ron to include non-product distributions. We show that for a boolean function f:X x Y -> {0,1} and a non-product distribution mu on X x Y and epsilon in (0,1/2) constant: D_{epsilon}^{1, mu}(f)= O((I(X:Y)+1) vc(f)), where D_{epsilon}^{1, mu}(f) represents the one-way distributional communication complexity of f with error at most epsilon under mu; vc(f) represents the Vapnik-Chervonenkis dimension of f and I(X:Y) represents the mutual information, under mu, between the random inputs of the two parties. For a non-boolean function f:X x Y ->[k], we show a similar upper bound on D_{epsilon}^{1, mu}(f) in terms of k, I(X:Y) and the pseudo-dimension of f' = f/k. In the quantum one-way model we provide a lower bound on the distributional communication complexity, under product distributions, of a function f, in terms the well studied complexity measure of f referred to as the rectangle bound or the corruption bound of f . We show for a non-boolean total function f : X x Y -> Z and a product distribution mu on XxY, Q_{epsilon^3/8}^{1, mu}(f) = Omega(rec_ epsilon^{1, mu}(f)), where Q_{epsilon^3/8}^{1, mu}(f) represents the quantum one-way distributional communication complexity of f with error at most epsilon^3/8 under mu and rec_ epsilon^{1, mu}(f) represents the one-way rectangle bound of f with error at most epsilon under mu . Similarly for a non-boolean partial function f:XxY -> Z U {*} and a product distribution mu on X x Y, we show, Q_{epsilon^6/(2 x 15^4)}^{1, mu}(f) = Omega(rec_ epsilon^{1, mu}(f)).Comment: ver 1, 19 page

    Low-Sensitivity Functions from Unambiguous Certificates

    Get PDF
    We provide new query complexity separations against sensitivity for total Boolean functions: a power 33 separation between deterministic (and even randomized or quantum) query complexity and sensitivity, and a power 2.222.22 separation between certificate complexity and sensitivity. We get these separations by using a new connection between sensitivity and a seemingly unrelated measure called one-sided unambiguous certificate complexity (UCminUC_{min}). We also show that UCminUC_{min} is lower-bounded by fractional block sensitivity, which means we cannot use these techniques to get a super-quadratic separation between bs(f)bs(f) and s(f)s(f). We also provide a quadratic separation between the tree-sensitivity and decision tree complexity of Boolean functions, disproving a conjecture of Gopalan, Servedio, Tal, and Wigderson (CCC 2016). Along the way, we give a power 1.221.22 separation between certificate complexity and one-sided unambiguous certificate complexity, improving the power 1.1281.128 separation due to G\"o\"os (FOCS 2015). As a consequence, we obtain an improved Ω(log1.22n)\Omega(\log^{1.22} n) lower-bound on the co-nondeterministic communication complexity of the Clique vs. Independent Set problem.Comment: 25 pages. This version expands the results and adds Pooya Hatami and Avishay Tal as author

    Boolean Delay Equations: A simple way of looking at complex systems

    Full text link
    Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time. They represent therewith metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil's staircases and ``fractal sunbursts``. All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid earth problems. The former have used small systems of BDEs, while the latter have used large networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (``partial BDEs``) and discuss connections with other types of dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.Comment: Latex, 67 pages with 15 eps figures. Revised version, in particular the discussion on partial BDEs is updated and enlarge
    corecore