73 research outputs found

    Interference Calculation in Asynchronous Random Access Protocols using Diversity

    Full text link
    The use of Aloha-based Random Access protocols is interesting when channel sensing is either not possible or not convenient and the traffic from terminals is unpredictable and sporadic. In this paper an analytic model for packet interference calculation in asynchronous Random Access protocols using diversity is presented. The aim is to provide a tool that avoids time-consuming simulations to evaluate packet loss and throughput in case decodability is still possible when a certain interference threshold is not exceeded. Moreover the same model represents the groundbase for further studies in which iterative Interference Cancellation is applied to received frames.Comment: This paper has been accepted for publication in the Springer's Telecommunication Systems journal. The final publication will be made available at Springer. Please refer to that version when citing this paper; Springer Telecommunication Systems, 201

    Advanced random access techniques for satellite communications

    Get PDF
    In this thesis, Advanced Random Access techniques for Satellite Communications are studied. In the last years, new advances in multi-access communication protocols together with the increasing need for bidirectional communications in consumer type of interactive satellite terminals have revived the interest for a set of schemes able to guarantee high-speed and low latency communications in bursty traffic conditions. In this work, starting from the latest findings on Aloha-based Random Access schemes, the optimization of such techniques and their use in closed-loop scenarios is investigated with particular regard to the Return Channel over Satellite of Digital Video Broadcasting. The thesis starts with a summary on the state of the art of Demand Assigned and Random Access techniques as well as on the recent evolution from the first to the second version of the Return Channel over Satellite of the Digital Video Broadcasting specification. In chapter 2 a stability and packet delay model for channel analysis and design are presented, showing that proper design through this tools can ensure high performance of the new access scheme. The use of control limit policies is also introduced and its use is thoroughly discussed both for finite and infinite users population showing that, differently from Slotted Aloha, in some cases static design over dynamic policies might be preferable if long propagation delay is present. In chapter 3 the same models and tools introduced for CRDSA are extended to the case of asynchronous Random Access schemes and a comparison of the two families of schemes is put in place demonstrating that asynchronous techniques are convenient only when the signal-to-noise ratio is high enough to ensure decodability of partially colliding packets. In chapter 4 a new access scheme currently patent pending is presented. In this scheme terminals access the channel in an unframed manner. It is shown that such a change brings improvements that further diminish latency due to immediate transmission of the first replica and further boost throughput because the number of loops on the corresponding bipartite graph representation is mitigated. The thesis concludes with a call for a new discussion of resource allocation in multi-access satellite communication scenarios such as DVB-RCS2 in light of the obtained results and of the new requirements in interactive satellite networks

    Random Access in DVB-RCS2: Design and Dynamic Control for Congestion Avoidance

    Full text link
    In the current DVB generation, satellite terminals are expected to be interactive and capable of transmission in the return channel with satisfying quality. Considering the bursty nature of their traffic and the long propagation delay, the use of a random access technique is a viable solution for such a Medium Access Control (MAC) scenario. In this paper, random access communication design in DVB-RCS2 is considered with particular regard to the recently introduced Contention Resolution Diversity Slotted Aloha (CRDSA) technique. This paper presents a model for design and tackles some issues on performance evaluation of the system by giving intuitive and effective tools. Moreover, dynamic control procedures that are able to avoid congestion at the gateway are introduced. Results show the advantages brought by CRDSA to DVB-RCS2 with regard to the previous state of the art.Comment: Accepted for publication: IEEE Transactions on Broadcasting; IEEE Transactions on Broadcasting, 201

    High Performance Signal Processing-Based Collision Resolution for Random Access Schemes

    Get PDF
    Els darrers anys han experimentat un augment de la demanda de serveis interactius per satèl·lit per al gran consum, cobrint serveis fixes i mòbils, tal i com accés de banda ampla, comunicacions màquina-màquina (M2M), supervisió, control i adquisició de dades (SCADA), transaccions i aplicacions de seguretat crítiques. Aquestes xarxes de comunicacions es caracteritzen per tenir una gran població d’usuaris compartint l’amplada de banda amb unes condicions de tràfic molt dinàmiques. Concretament, en el canal de retorn (de l’usuari a la xarxa) de xarxes d’accés de banda ampla, els usuaris residencials generen grans ràfegues de tràfic amb períodes d’inactivitat freqüents. Una situació similar succeeix en xarxes de comunicacions mòbils per satèl·lit, on una gran població de terminals generen transmissions infreqüents de senyalització, serveis basats en la localització or altres aplicacions de missatgeria. Aquests serveis requereixen el desenvolupament de protocols d’accés múltiple eficients que puguin operar en les condicions descrites anteriorment. Els protocols d´accés aleatori són bons candidats per servir tràfic poc predictiu, amb transmissions infreqüents així com sensibles amb el retard. A més, els protocols d´accés aleatori suporten un gran nombre de terminals compartint el canal de comunicacions i requereixen poca complexitat en el terminals. El protocols d´accés aleatori han estat àmpliament estudiats i desplegats en xarxes terrestres, però les seves prestacions són pobres en el entorn satèl·lital, que està caracteritzat per retards de propagació molt grans. Avui en dia, el seu ús en les xarxes de comunicacions per satèl·lit està principalment limitat a la senyalització d’inici de sessió, transmissió de paquets de control i en alguns casos a la transmissió de petits volums de dades amb unes eficiència d’utilització del canal molt baixa. Aquesta tesi proposa tres noves tècniques d’accés aleatori, bens adaptades per proveir els serveis esmentats anteriorment en un entorn satèl·lital, amb altes prestacions i una complexitat en el terminal d’usuari reduïda. Les noves tècniques d’accés aleatori són Contention Resolution Diversity Slotted Aloha (CRDSA), Asynchronous Contention Resolution Diversity Aloha (ACRDA) i Enhanced Spread Spectrum Aloha (E-SSA), adaptades per un tipus d’accés ranurat, asíncron i d’espectre eixamplat respectivament. Les tres tècniques utilitzen una codificació de canal (FEC) robusta, capaç d’operar en front de interferències elevades, que són típiques en l’accés aleatori, i d’un mecanisme de cancel·lació successiva d’interferència que s’implementa en el receptor sobre els paquets descodificats satisfactòriament. Els nous protocols obtenen un throughput normalitzat superior a 1 bit/s/Hz amb una tassa de pèrdua de paquets inferior a 10-3, el qual representa un factor de millora de 1000 respecte a protocols d’accés aleatori tradicionals com l’ALOHA ranurat. Les prestacions de les noves tècniques d’accés aleatori has estat analitzades per mitjà de simulacions, així com amb nou models analítics desenvolupats en aquesta tesi capaços de caracteritzar el tràfic, la distribució estadística de la potència dels paquets, les prestacions de la codificació de canal (FEC) i el procés de cancel·lació d’interferència successiva.Los últimos años han experimentado un crecimiento de la demanda de servicios interactivos por satélite para el gran consumo, cubriendo servicios fijos i móviles, como el acceso de banda ancha, comunicaciones máquina a máquina (M2M), supervisión, control y adquisición de datos (SCADA), transacciones i aplicaciones criticas de seguridad. Estas redes de comunicaciones se caracterizan por tener una gran población de usuarios compartiendo el ancho de banda en unas condiciones de tráfico muy dinámicas. Concretamente, en el canal de retorno (del usuario a la red) de redes de acceso de banda ancha, los usuarios residenciales generan grandes ráfagas de tráfico con periodos frecuentes de inactividad. Una situación similar ocurre en las redes de comunicaciones móviles por satélite, donde una gran población de terminales generan transmisiones infrecuentes de señalización, servicios basados en la localización u otras aplicaciones me mensajería. Estos servicios requieren el desarrollo de protocolos de acceso múltiple eficientes capaces de operar en las condiciones descritas anteriormente. Los protocolos de acceso aleatorio son buenos candidatos para servir el tráfico poco predictivo, con transmisiones infrecuentes así como sensibles al retardo. Además, los protocolos de acceso soportan un gran número de terminales compartiendo el canal de comunicaciones y requieren poca complejidad en los terminales. Los protocolos de acceso aleatorio han estado ampliamente estudiados i desplegados en las redes terrestres, pero sus prestaciones son pobres en el entorno satelital, que se caracteriza por retardos de comunicaciones muy elevados. Hoy en día, su uso en la redes de comunicaciones por satélite está principalmente limitado a la señalización de inicio de sesión, transmisión de pequeños volumenes de datos con eficiencia de utilización del canal muy baja. Esta tesis propone tres nuevas técnicas de acceso aleatorio bien adaptadas para proveer los servicios mencionados anteriormente en un entorno de comunicaciones por satélite, con altas prestaciones y una complejidad en el terminal de usuario reducida. Las nuevas técnicas de acceso aleatorio son Contention Resolution Diversity Slotted Aloha (CRDSA), Asynchronous Contention Resolution Diversity Aloha (ACRDA) y Enhanced Spread Spectrum Aloha (E-SSA), adaptadas para un tipo de acceso ranurado, asíncrono y de espectro ensanchado respectivamente. Las tres técnicas utilizan una codificación de canal (FEC) robusta, capaz de operar en condiciones de interferencia elevadas, que son típicas en el acceso aleatorio, y de un mecanismo de cancelación sucesiva de interferencias que se implementa en el receptor sobre los paquetes que han sido decodificados satisfactoriamente. Los nuevos protocolos obtienen un throughput normalizado superior a 1 bit/s/Hz con una tasa de pérdida de paquetes inferior a 10-3, lo cual representa un factor de mejora de 1000 respecto a los protocolos de acceso aleatorio tradicionales como el ALOHA ranurado. Las prestaciones de las nuevas técnicas de acceso aleatorio han sido analizadas con simulaciones así como con nuevos modelos analíticos desarrollados en esta tesis, capaces de caracterizar el tráfico, la distribución estadística de la potencia de los paquetes, las prestaciones de la codificación de canal (FEC) y el proceso de cancelación sucesiva de interferencias.Over the past years there has been a fast growing demand for low-cost interactive satellite terminals supporting both fixed and mobile services, such as consumer broadband access, machine-to-machine communications (M2M), supervisory control and data acquisition (SCADA), transaction and safety of life applications. These networks, are generally characterized by a large population of terminals sharing the available resources under very dynamic traffic conditions. In particular, in the return link (user to network) of commercial satellite broadband access networks, residential users are likely to generate a large amount of low duty cycle bursty traffic with extended inactivity periods. A similar situation occurs in satellite mobile networks whereby a large number of terminals typically generate infrequent packets for signaling transmission as well for position reporting or other messaging applications. These services call for the development of efficient multiple access protocols able to cope with the above operating conditions. Random Access (RA) techniques are by nature, good candidates for the less predictive, low duty cycle as well as time sensitive return link traffic. Besides, RA techniques are capable of supporting large population of terminals sharing the same capacity and require low terminal complexity. RA schemes have been widely studied and deployed in terrestrial networks, but do not perform well in the satellite environment, which is characterized by very long propagation delays. Today, their use in satellite networks is mainly limited to initial network login, the transmission of control packets, and in some cases, for the transmission of very small volumes of data with very low channel utilization. This thesis proposes three novel RA schemes well suited for the provision of the above-mentioned services over a satellite environment with high performance and low terminal complexity. The new RA schemes are Contention Resolution Diversity Slotted Aloha (CRDSA), Asynchronous Contention Resolution Diversity Aloha (ACRDA) and Enhanced Spread Spectrum Aloha (E-SSA), suited for slotted, unslotted and spread spectrum-based systems respectively. They all use strong Forward Error Correction (FEC) codes, able to cope with heavy co-channel interference typically present in RA, and successive interference cancellation implemented over the successfully decoded packets. The new schemes achieve a normalized throughput above 1 bit/s/Hz for a packet loss ratio below 10-3, which represents a 1000-fold increase compared to Slotted ALOHA. The performance of the proposed RA schemes has been analyzed by means of detailed simulations as well as novel analytical frameworks that characterize traffic and packets power statistical distributions, the performance of the FEC coding as well as the iterative interference cancellation processing at the receiver

    Modern Random Access for Satellite Communications

    Full text link
    The present PhD dissertation focuses on modern random access (RA) techniques. In the first part an slot- and frame-asynchronous RA scheme adopting replicas, successive interference cancellation and combining techniques is presented and its performance analysed. The comparison of both slot-synchronous and asynchronous RA at higher layer, follows. Next, the optimization procedure, for slot-synchronous RA with irregular repetitions, is extended to the Rayleigh block fading channel. Finally, random access with multiple receivers is considered.Comment: PhD Thesis, 196 page

    Random access techniques for satellite communications

    Get PDF
    The effective coverage of satellites and the technology behind have motivated many actors to develop efficient communications for Internet access, television and telephony. For a long time, reservation resources of Demand Assignment Multiple Access (DAMA) techniques have been largely deployed in the return link of satellite communications, occupying most of the frequency bandwidth. However, these resources cannot follow the technological growth with big users communities in applications like the Internet of Things and Machine to Machine communications. Especially because the Round Trip Time is significant in addition to a potential underuse of the resources. Thus, access protocols based on ALOHA took over a big part of the Random Access (RA) research area and have considerably evolved lately. CRDSA have particularly put its fingerprint in this domain, which inspired many different techniques. In this context, a complementary method, called MARSALA comes to unlock CRDSA when packets can no longer be retrieved. This actually involves a correlation complexity related to packet localization which is necessary for replicas combinations that results in a potentially higher signal power. Accordingly, the main goal of this PhD research is to seek for effective and less complex alternatives. More precisely, the core challenge focuses on the way to manage multi-user transmissions and solve interference at reception, with the smallest complexity. In addition, the loop phenomenon which occur when multiple users transmit their packets at the same positions is tackled as it creates an error floor at the packet loss ratio performance. Synchronous and asynchronous solutions are proposed in this thesis, mainly based on providing the transmitter and the receiver with a shared prior information that could help reduce the complexity, mitigate the loop phenomenon and enhance the system performance. An in-depth description and analysis of the proposed techniques are presented in this dissertation

    Energy and Spectral Efficient Wireless Communications

    Get PDF
    Energy and spectrum are two precious commodities for wireless communications. How to improve the energy and spectrum efficiency has become two critical issues for the designs of wireless communication systems. This dissertation is devoted to the development of energy and spectral efficient wireless communications. The developed techniques can be applied to a wide range of wireless communication systems, such as wireless sensor network (WSN) designed for structure health monitoring (SHM), medium access control (MAC) for multi-user systems, and cooperative spectrum sensing in cognitive radio systems. First, to improve the energy efficiency in SHM WSN, a new ultra low power (ULP) WSN is proposed to monitor the vibration properties of structures such as buildings, bridges, and the wings and bodies of aircrafts. The new scheme integrates energy harvesting, data sensing, and wireless communication into a unified process, and it achieves significant energy savings compared to existing WSNs. Second, a cross-layer collision tolerant (CT) MAC scheme is proposed to improve energy and spectral efficiency in a multi-user system with shared medium. When two users transmit simultaneously over a shared medium, a collision happens at the receiver. Conventional MAC schemes will discard the collided signals, which result in a waste of the precious energy and spectrum resources. In our proposed CT-MAC scheme, each user transmits multiple weighted replicas of a packet at randomly selected data slots in a frame, and the indices of the selected slots are transmitted in a special collision-free position slot at the beginning of each frame. Collisions of the data slots in the MAC layer are resolved by using multiuser detection (MUD) in the PHY layer. Compared to existing schemes, the proposed CT-MAC scheme can support more simultaneous users with a higher throughput. Third, a new cooperative spectrum sensing scheme is proposed to improve the energy and spectral efficiency of a cognitive radio network. A new Slepian-Wolf coded cooperation scheme is proposed for a cognitive radio network with two secondary users (SUs) performing cooperative spectrum sensing through a fusion center (FC). The proposed scheme can achieve significant performance gains compared to existing schemes

    Timed power line data communication

    Get PDF
    With the ever increasing demand for data communication methods, power line communication has become an interesting alternative method for data communication. Power line communication falls into two categories: one for data transmission between sites in the power grid and the other for home or office networking. When considering home or office networking, existing methods are either too slow for tasks other than simple automation, or are very fast with a higher cost than necessary for the desired function. The objective in this work is to develop a lower cost communication system with an intermediate data transmission rate.At first glance, power line communication looks like a good option because of the availability of power outlets in every room of a building. However, the power conductors were installed solely for the purpose of distributing 60 Hz mains power and, for data signals, they exhibit very high attenuation, variable impedance and there is radio frequency shielding. Furthermore, many of the 60 Hz loads produce radio frequency interference that impedes data communication. Previous research has shown that much of the noise is time synchronous with the 60 Hz mains frequency and that the majority of data errors occur during these periods of high noise. This work develops a power line communication protocol that coordinates transmissions and uses only the predictable times of lower noise. Using a central control strategy, the power line 60 Hz mains signal is divided into 16 timeslots and each timeslot is monitored for errors. The central controller periodically polls all stations to learn which timeslots have low noise and it then controls all transmissions to make the best use of these good timeslots. The periodic polling allows the system to adapt to changes in electrical loading and noise. This control strategy has been achieved with modest complexity and laboratory measurements have shown throughput approaching 70% of the modem bit rate
    • …
    corecore