964 research outputs found

    Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case

    Get PDF
    The official published version of the article can be found at the link below.This paper is concerned with a new distributed H∞-consensus filtering problem over a finite-horizon for sensor networks with multiple missing measurements. The so-called H∞-consensus performance requirement is defined to quantify bounded consensus regarding the filtering errors (agreements) over a finite-horizon. A set of random variables are utilized to model the probabilistic information missing phenomena occurring in the channels from the system to the sensors. A sufficient condition is first established in terms of a set of difference linear matrix inequalities (DLMIs) under which the expected H∞-consensus performance constraint is guaranteed. Given the measurements and estimates of the system state and its neighbors, the filter parameters are then explicitly parameterized by means of the solutions to a certain set of DLMIs that can be computed recursively. Subsequently, two kinds of robust distributed H∞-consensus filters are designed for the system with norm-bounded uncertainties and polytopic uncertainties. Finally, two numerical simulation examples are used to demonstrate the effectiveness of the proposed distributed filters design scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview

    Get PDF

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations
    corecore