14,585 research outputs found

    Stochastic Optimization of PCA with Capped MSG

    Full text link
    We study PCA as a stochastic optimization problem and propose a novel stochastic approximation algorithm which we refer to as "Matrix Stochastic Gradient" (MSG), as well as a practical variant, Capped MSG. We study the method both theoretically and empirically

    Worst-Case Linear Discriminant Analysis as Scalable Semidefinite Feasibility Problems

    Full text link
    In this paper, we propose an efficient semidefinite programming (SDP) approach to worst-case linear discriminant analysis (WLDA). Compared with the traditional LDA, WLDA considers the dimensionality reduction problem from the worst-case viewpoint, which is in general more robust for classification. However, the original problem of WLDA is non-convex and difficult to optimize. In this paper, we reformulate the optimization problem of WLDA into a sequence of semidefinite feasibility problems. To efficiently solve the semidefinite feasibility problems, we design a new scalable optimization method with quasi-Newton methods and eigen-decomposition being the core components. The proposed method is orders of magnitude faster than standard interior-point based SDP solvers. Experiments on a variety of classification problems demonstrate that our approach achieves better performance than standard LDA. Our method is also much faster and more scalable than standard interior-point SDP solvers based WLDA. The computational complexity for an SDP with mm constraints and matrices of size dd by dd is roughly reduced from O(m3+md3+m2d2)\mathcal{O}(m^3+md^3+m^2d^2) to O(d3)\mathcal{O}(d^3) (m>dm>d in our case).Comment: 14 page

    Regression on fixed-rank positive semidefinite matrices: a Riemannian approach

    Full text link
    The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixed-rank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks
    • …
    corecore