7,417 research outputs found

    Channel Fragmentation in Dynamic Spectrum Access Systems - a Theoretical Study

    Full text link
    Dynamic Spectrum Access systems exploit temporarily available spectrum (`white spaces') and can spread transmissions over a number of non-contiguous sub-channels. Such methods are highly beneficial in terms of spectrum utilization. However, excessive fragmentation degrades performance and hence off-sets the benefits. Thus, there is a need to study these processes so as to determine how to ensure acceptable levels of fragmentation. Hence, we present experimental and analytical results derived from a mathematical model. We model a system operating at capacity serving requests for bandwidth by assigning a collection of gaps (sub-channels) with no limitations on the fragment size. Our main theoretical result shows that even if fragments can be arbitrarily small, the system does not degrade with time. Namely, the average total number of fragments remains bounded. Within the very difficult class of dynamic fragmentation models (including models of storage fragmentation), this result appears to be the first of its kind. Extensive experimental results describe behavior, at times unexpected, of fragmentation under different algorithms. Our model also applies to dynamic linked-list storage allocation, and provides a novel analysis in that domain. We prove that, interestingly, the 50% rule of the classical (non-fragmented) allocation model carries over to our model. Overall, the paper provides insights into the potential behavior of practical fragmentation algorithms

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE

    Data Gathering in Cognitive Radio Ad Hoc and Sensor Wireless Networks

    Get PDF
    Data gathering is a network communication task in which all of the network’s nodes send their individual messages to a distinguished sink node. In cognitive radio ad hoc and sensor wireless networks (CR-AHSWNs), unlicensed secondary users (SUs) opportunistically use channels when the licensed primary users are not using them. Therefore, the channels available to each SU vary with time and location, which makes the development of data gathering algorithms for CR-AHSWNs challenging. In this thesis, a data gathering protocol for CR-AHSWNs is proposed. The protocol consists of several distributed SU action selection and channel selection algorithms. An algorithm that can reduce the data gathering delay by selecting message forwarding SUs is also proposed. Finally, an algorithm that calculates an estimate of the successful data gathering ratio (SDGR) is proposed. The SDGR is affected by each SU’s channel availability and network collisions, and the exact value is extremely challenging to calculate
    corecore