129,805 research outputs found

    Energy efficiency analysis of next-generation passive optical network (NG-PON) technologies in a major city network

    Get PDF
    Ever-increasing bandwidth demands associated with mobile backhaul, content-rich services and the convergence of residential and business access will drive the need for next-generation passive optical networks (NG-PONs) in the long term. At the same time, there is a growing interest in reducing the energy consumption and the associated cost of the access network. In this paper, we consider a deployment scenario in a major city to assess the energy efficiency of various PON solutions from a telecom operator's perspective. We compare five next-generation technologies to a baseline GPON deployment offering similar bandwidths and Quality of Service (QoS) for best-effort high speed connectivity services. We follow two approaches:first, we consider a fixed split ratio (1:64) in an existing Optical Distribution Network (ODN); next, we consider an upgraded ODN with an optimized split ratio for the specific bandwidth and QoS values. For medium bandwidth demands, our results show that legacy PONs can be upgraded to 10G PON without any ODN modification. For future applications that may require access rates up to 1 Gb/s, NG-PON2 technologies with higher split ratios and increased reach become more interesting systems, offering the potential for both increased energy efficiency and node consolidation

    Redundancy Strategies for a High Splitting Optically Amplified Passive Optical Network

    Get PDF
    Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.High splitting, optically amplified, passive optical networks (SuperPONs) are investigated in terms of redundancy provision and protection mechanisms. Options for redundancy, including the important special case of dual homing, are detailed, and it is determined as to which of these options (duplication of the feeder and first distribution section, and N+1 protection of the optical amplifiers in the amplified splitter) would be required to be provided to all attached users to facilitate appropriate availability of the basic telephony service. The distributed amplified splitter dual homing solution is found to outperform the single amplified splitter solution in terms of its survivability. The protection mechanisms necessary to automatically switch to the redundant provision are discussed and it is seen that with the aid of suitable regular precautionary procedures protection switching can generally be provided rapidly (<50 ms). Finally, an availability, and cost versus availability, study confirms the aforementioned redundancy assessment for fiber-to-the-home (FTTH) implementations, but shows fiber-to-the-curb (FTTC) as needing additional redundancyPeer reviewe

    Resilient availability and bandwidth-aware multipath provisioning for media transfer over the internet (Best Paper Award)

    Get PDF
    Traditional routing in the Internet is best-effort. Path differentiation including multipath routing is a promising technique to be used for meeting QoS requirements of media intensive applications. Since different paths have different characteristics in terms of latency, availability and bandwidth, they offer flexibility in QoS and congestion control. Additionally protection techniques can be used to enhance the reliability of the network. This paper studies the problem of how to optimally find paths ensuring maximal bandwidth and resiliency of media transfer over the network. In particular, we propose two algorithms to reserve network paths with minimal new resources while increasing the availability of the paths and enabling congestion control. The first algorithm is based on Integer Linear Programming which minimizes the cost of the paths and the used resources. The second one is a heuristic-based algorithm which solves the scalability limitations of the ILP approach. The algorithms ensure resiliency against any single link failure in the network. The experimental results indicate that using the proposed schemes the connections availability improve significantly and a more balanced load is achieved in the network compared to the shortest path-based approaches

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Feasibility, Architecture and Cost Considerations of Using TVWS for Rural Internet Access in 5G

    Get PDF
    The cellular technology is mostly an urban technology that has been unable to serve rural areas well. This is because the traditional cellular models are not economical for areas with low user density and lesser revenues. In 5G cellular networks, the coverage dilemma is likely to remain the same, thus widening the rural-urban digital divide further. It is about time to identify the root cause that has hindered the rural technology growth and analyse the possible options in 5G architecture to address this issue. We advocate that it can only be accomplished in two phases by sequentially addressing economic viability followed by performance progression. We deliberate how various works in literature focus on the later stage of this ‘two-phase’ problem and are not feasible to implement in the first place. We propose the concept of TV band white space (TVWS) dovetailed with 5G infrastructure for rural coverage and show that it can yield cost-effectiveness from a service provider’s perspective

    Transmission of natural scene images through a multimode fibre

    Get PDF
    The optical transport of images through a multimode fibre remains an outstanding challenge with applications ranging from optical communications to neuro-imaging. State of the art approaches either involve measurement and control of the full complex field transmitted through the fibre or, more recently, training of artificial neural networks that however, are typically limited to image classes belong to the same class as the training data set. Here we implement a method that statistically reconstructs the inverse transformation matrix for the fibre. We demonstrate imaging at high frame rates, high resolutions and in full colour of natural scenes, thus demonstrating general-purpose imaging capability. Real-time imaging over long fibre lengths opens alternative routes to exploitation for example for secure communication systems, novel remote imaging devices, quantum state control processing and endoscopy

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions
    • 

    corecore