19,235 research outputs found

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Truncated Stochastic Approximation with Moving Bounds: Convergence

    Full text link
    In this paper we propose a wide class of truncated stochastic approximation procedures with moving random bounds. While we believe that the proposed class of procedures will find its way to a wider range of applications, the main motivation is to accommodate applications to parametric statistical estimation theory. Our class of stochastic approximation procedures has three main characteristics: truncations with random moving bounds, a matrix valued random step-size sequence, and dynamically changing random regression function. We establish convergence and consider several examples to illustrate the results

    Recursive Program Optimization Through Inductive Synthesis Proof Transformation

    Get PDF
    The research described in this paper involved developing transformation techniques which increase the efficiency of the noriginal program, the source, by transforming its synthesis proof into one, the target, which yields a computationally more efficient algorithm. We describe a working proof transformation system which, by exploiting the duality between mathematical induction and recursion, employs the novel strategy of optimizing recursive programs by transforming inductive proofs. We compare and contrast this approach with the more traditional approaches to program transformation, and highlight the benefits of proof transformation with regards to search, correctness, automatability and generality

    Upside-down Deduction

    Get PDF
    Over the recent years, several proposals were made to enhance database systems with automated reasoning. In this article we analyze two such enhancements based on meta-interpretation. We consider on the one hand the theorem prover Satchmo, on the other hand the Alexander and Magic Set methods. Although they achieve different goals and are based on distinct reasoning paradigms, Satchmo and the Alexander or Magic Set methods can be similarly described by upside-down meta-interpreters, i.e., meta-interpreters implementing one reasoning principle in terms of the other. Upside-down meta-interpretation gives rise to simple and efficient implementations, but has not been investigated in the past. This article is devoted to studying this technique. We show that it permits one to inherit a search strategy from an inference engine, instead of implementing it, and to combine bottom-up and top-down reasoning. These properties yield an explanation for the efficiency of Satchmo and a justification for the unconventional approach to top-down reasoning of the Alexander and Magic Set methods

    Query Evaluation in Recursive Databases

    Get PDF
    corecore