409 research outputs found

    Auxiliary Guided Autoregressive Variational Autoencoders

    Get PDF
    Generative modeling of high-dimensional data is a key problem in machine learning. Successful approaches include latent variable models and autoregressive models. The complementary strengths of these approaches, to model global and local image statistics respectively, suggest hybrid models that encode global image structure into latent variables while autoregressively modeling low level detail. Previous approaches to such hybrid models restrict the capacity of the autoregressive decoder to prevent degenerate models that ignore the latent variables and only rely on autoregressive modeling. Our contribution is a training procedure relying on an auxiliary loss function that controls which information is captured by the latent variables and what is left to the autoregressive decoder. Our approach can leverage arbitrarily powerful autoregressive decoders, achieves state-of-the art quantitative performance among models with latent variables, and generates qualitatively convincing samples.Comment: Published as a conference paper at ECML-PKDD 201

    Adaptive Density Estimation for Generative Models

    Get PDF
    Unsupervised learning of generative models has seen tremendous progress over recent years, in particular due to generative adversarial networks (GANs), variational autoencoders, and flow-based models. GANs have dramatically improved sample quality, but suffer from two drawbacks: (i) they mode-drop, i.e., do not cover the full support of the train data, and (ii) they do not allow for likelihood evaluations on held-out data. In contrast, likelihood-based training encourages models to cover the full support of the train data, but yields poorer samples. These mutual shortcomings can in principle be addressed by training generative latent variable models in a hybrid adversarial-likelihood manner. However, we show that commonly made parametric assumptions create a conflict between them, making successful hybrid models non trivial. As a solution, we propose to use deep invertible transformations in the latent variable decoder. This approach allows for likelihood computations in image space, is more efficient than fully invertible models, and can take full advantage of adversarial training. We show that our model significantly improves over existing hybrid models: offering GAN-like samples, IS and FID scores that are competitive with fully adversarial models, and improved likelihood scores

    An Introduction to Variational Autoencoders

    Full text link
    Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions

    High Fidelity Image Synthesis With Deep VAEs In Latent Space

    Full text link
    We present fast, realistic image generation on high-resolution, multimodal datasets using hierarchical variational autoencoders (VAEs) trained on a deterministic autoencoder's latent space. In this two-stage setup, the autoencoder compresses the image into its semantic features, which are then modeled with a deep VAE. With this method, the VAE avoids modeling the fine-grained details that constitute the majority of the image's code length, allowing it to focus on learning its structural components. We demonstrate the effectiveness of our two-stage approach, achieving a FID of 9.34 on the ImageNet-256 dataset which is comparable to BigGAN. We make our implementation available online.Comment: 19 pages, 16 figure
    • …
    corecore