22 research outputs found

    Sub-Femto-Farad Resolution Electronic Interfaces for Integrated Capacitive Sensors: A Review

    Get PDF
    Capacitance detection is a universal transduction mechanism used in a wide variety of sensors and applications. It requires an electronic front-end converting the capacitance variation into another more convenient physical variable, ultimately determining the performance of the whole sensor. In this paper we present a comprehensive review of the different signal conditioning front-end topologies targeted in particular at sub-femtofarad resolution. Main design equations and analysis of the limits due to noise are reported in order to provide the designer with guidelines for choosing the most suitable topology according to the main design specifications, namely energy consumption, area occupation, measuring time and resolution. A data-driven comparison of the different solutions in literature is also carried out revealing that resolution, measuring time, area occupation and energy/conversion lower than 100 aF, 1 ms 0.1 mm2, and 100 pJ/conv. can be obtained by capacitance to digital topologies, which therefore allow to get the best compromise among all design specifications

    Production accompanying testing of the ATLAS Pixel module

    Get PDF
    The ATLAS Pixel detector, innermost sub-detector of the ATLAS experiment at LHC, CERN, can be sensibly tested in its entirety the first time after its installation in 2006. Because of the poor accessibility (probably once per year) of the Pixel detector and tight scheduling the replacement of damaged modules after integration as well as during operation will become a highly exposed business. Therefore and to ensure that no affected parts will be used in following production steps, it is necessary that each production step is accompanied by testing the components before assembly and make sure the operativeness afterwards. Probably 300 of about total 2000 semiconductor hybrid pixel detector modules will be build at the Universität Dortmund. Thus a production test setup has been build up and examined before starting serial production. These tests contain the characterization and inspection of the module components and the module itself under different environmental conditions and diverse operating parameters. Once a module is assembled the operativeness is tested with a radioactive source and the long-time stability is assured by a burn-in. A fully electrical characterization is the basis for module selection and sorting for the ATLAS Pixel detector. Additionally the charge collection behavior of irradiated and non irradiated modules has been investigated in the H8 beamline with 180 GeV pions

    Desenvolvimento de um sistema de aquecimento indutivo para a síntese de grafeno por CVD em reator de parede fria

    Get PDF
    Since it was firstly isolated, graphene has become one of the most researched nano materials, due to its exciting physical and chemical properties, namely the nearly ballistic transport and high charge mobility, optical transparency and extreme mechanical behaviour, meeting a plethora of application fields. However, the industrial mass-production is still to overcome, and a multitude of growing processes evolved as an effort to reach this objective. Fast, controlled and scalable growth of single crystalline graphene in a continuous process are the basic guidelines for an ideal synthesis process, that the Chemical Vapour Deposition (CVD) technique can offer. This work settles on the exploitation of Cold Wall CVD by designing, developing and testing an electromagnetic inductively assisted CVD system. This approach proved to enable rapid and controlled heating curves, allowing for sample suspension inside the reactor tube, permitting an operation based on optical pyrometric monitoring of the temperature as a key parameter for the growth process. Using this system, high quality single layer graphene domains with well-defined hexagonal shape were obtained, as confirmed by Raman spectroscopy and scanning electron microscopy. The present work contributes with an effort towards an understanding of graphene growth mechanisms in order to accurately control the substrate temperature, a key growth parameter.Desde que foi isolado pela primeira vez, o grafeno assumiu-se como um dos nano-materiais mais investigados dadas as suas extraordinárias propriedades, nomeadamente a condução elétrica quase balística e elevada mobilidade de carga, transparência ótica e comportamento mecânico extremo, compatíveis com um sem número de campos de aplicação. No entanto, a sua produção industrial em larga escala ainda não foi alcançada, e vários métodos de síntese foram sendo desenvolvidos num esforço para atingir esse objetivo. A síntese rápida, controlada e escalável num processo contínuo de grafeno monocristalino são condições altamente desejáveis que a técnica de Deposição Química em Fase de Vapor oferece. Este trabalho baseia-se no desenvolvimento de um sistema de aquecimento indutivo para a síntese de grafeno num reator CVD de parede fria, englobando a sua conceção, construção e validação. Esta abordagem permitiu obter curvas de aquecimento rápidas e controladas, numa configuração de amostra suspensa, possibilitando uma operação baseada na monitorização pirométrica da temperatura como parâmetro chave para o processo de crescimento. Utilizando este equipamento, foi possível obter domínios hexagonais de grafeno de camada única e elevada qualidade, como confirmado por espectroscopia de Raman e microscopia eletrónica de varrimento. O presente trabalho contribui para a compreensão dos mecanismos de crescimento de grafeno através do controlo preciso da temperatura do substrato, identificado como um parâmetro chave.Trabalho desenvolvido no âmbito do projeto UID/CTM/50015/2019 financiado por fundos nacionais pela FCT/MEC (UID/CTM/50025/2019) e cofinanciado pelo FEDER(POCI-01-0145-FEDER028755) sob o acordo de parceria PT2020.Mestrado em Engenharia Físic

    Modular robotics overview of the `state of the art`

    Full text link

    Preliminary Electrical Designs for CTEx and AFIT Satellite Ground Station

    Get PDF
    This thesis outlines the design of the electrical components for the space-based ChromoTomography Experiment (CTEx). CTEx is the next step in the development of high-speed chromotomography at the Air Force Institute of Technology. The electrical design of the system is challenging due to the large amount of data that is acquired by the imager and the limited resources that is inherent with space-based systems. Additional complication to the design is the need to know the angle of a spinning prism that is in the field of view very precisely for each image. Without this precise measurement any scene that is reconstructed from the data will be blurry and incomprehensible. This thesis also outlines how the control software for the CTEx space system should be created. The software ow is a balance of complex real time target pointing angles and simplicity to allow the system to function as quick as possible. This thesis also discusses the preliminary design for an AFIT satellite ground station based upon the design of the United States Air Force Academy\u27s ground station. The AFIT ground station will be capable of commanding and controlling satellites produced by USAFA and satellites produced by a burgeoning small satellite program at AFIT

    Commissioning Perspectives for the ATLAS Pixel Detector

    Get PDF
    The ATLAS Pixel Detector, the innermost sub-detector of the ATLAS experiment at the Large Hadron Collider, CERN, is an 80 million channel silicon pixel tracking detector designed for high-precision charged particle tracking and secondary vertex reconstruction. It was installed in the ATLAS experiment and commissioning for the first proton-proton collision data taking in 2008 has begun. Due to the complex layout and limited accessibility, quality assurance measurements were continuously performed during production and assembly to ensure that no problematic components are integrated. The assembly of the detector at CERN and related quality assurance measurement results, including comparison to previous production measurements, will be presented. In order to verify that the integrated detector, its data acquisition readout chain, the ancillary services and cooling system as well as the detector control and data acquisition software perform together as expected approximately 8% of the detector system was progressively assembled as close to the final layout as possible. The so-called System Test laboratory setup was operated for several months under experiment-like environment conditions. The interplay between different detector components was studied with a focus on the performance and tunability of the optical data transmission system. Operation and optical tuning procedures were developed and qualified for the upcoming commission ing. The front-end electronics preamplifier threshold tuning and noise performance were studied and noise occupancy of the detector with low sensor bias voltages was investigated. Data taking with cosmic muons was performed to test the data acquisition and trigger system as well as the offline reconstruction and analysis software. The data quality was verified with an extended version of the pixel online monitoring package which was implemented for the ATLAS Combined Testbeam. The detector raw data of the Combined Testbeam and of the System Test cosmic run was converted for offline data analysis with the Pixel bytestream converter which was continuously extended and adapted according to the offline analysis software needs

    Probing quantum devices with radio-frequency reflectometry

    Get PDF
    Many important phenomena in quantum devices are dynamic, meaning that they cannot be studied using time-averaged measurements alone. Experiments that measure such transient effects are collectively known as fast readout. One of the most useful techniques in fast electrical readout is radio-frequency reflectometry, which can measure changes in impedance (both resistive and reactive) even when their duration is extremely short, down to a microsecond or less. Examples of reflectometry experiments, some of which have been realized and others so far only proposed, include projective measurements of qubits and Majorana devices for quantum computing, real-time measurements of mechanical motion, and detection of non-equilibrium temperature fluctuations. However, all of these experiments must overcome the central challenge of fast readout: the large mismatch between the typical impedance of quantum devices (set by the resistance quantum) and of transmission lines (set by the impedance of free space). Here, we review the physical principles of radio-frequency reflectometry and its close cousins, measurements of radio-frequency transmission and emission. We explain how to optimize the speed and sensitivity of a radio-frequency measurement and how to incorporate new tools, such as superconducting circuit elements and quantum-limited amplifiers into advanced radio-frequency experiments. Our aim is threefold: to introduce the readers to the technique, to review the advances to date, and to motivate new experiments in fast quantum device dynamics. Our intended audience includes experimentalists in the field of quantum electronics who want to implement radio-frequency experiments or improve them, together with physicists in related fields who want to understand how the most important radio-frequency measurements work

    NASA Tech Briefs, November 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Commissioning perspectives for the ATLAS Pixel Detector

    Get PDF
    The ATLAS Pixel Detector, the innermost sub-detector of the ATLAS experiment at the Large Hadron Collider, CERN, is an 80 million channel silicon pixel tracking detector designed for high-precision charged particle tracking and secondary vertex reconstruction. It was installed in the ATLAS experiment and commissioning for the first proton-proton collision data taking in 2008 has begun. Due to the complex layout and limited accessibility, quality assurance measurements were continuously performed during production and assembly to ensure that no problematic components are integrated. The assembly of the detector at CERN and related quality assurance measurement results, including comparison to previous production measurements, will be presented. In order to verify that the integrated detector, its data acquisition readout chain, the ancillary services and cooling system as well as the detector control and data acquisition software perform together as expected approximately 8% of the detector system was progressively assembled as close to the final layout as possible. The so-called System Test laboratory setup was operated for several months under experiment-like environment conditions. The interplay between different detector components was studied with a focus on the performance and tunability of the optical data transmission system. Operation and optical tuning procedures were developed and qualified for the upcoming commissioning. The front-end electronics preamplifier threshold tuning and noise performance were studied and noise occupancy of the detector with low sensor bias voltages was investigated. Data taking with cosmic muons was performed to test the data acquisition and trigger system as well as the offline reconstruction and analysis software. The data quality was verified with an extended version of the pixel online monitoring package which was implemented for the ATLAS Combined Testbeam. The detector raw data of the Combined Testbeam and of the System Test cosmic run was converted for offline data analysis with the Pixel bytestream converter which was continuously extended and adapted according to the offline analysis software needs
    corecore