8 research outputs found

    Autotuning Stencil Computations with Structural Ordinal Regression Learning

    Get PDF
    Stencil computations expose a large and complex space of equivalent implementations. These computations often rely on autotuning techniques, based on iterative compilation or machine learning (ML), to achieve high performance. Iterative compilation autotuning is a challenging and time-consuming task that may be unaffordable in many scenarios. Meanwhile, traditional ML autotuning approaches exploiting classification algorithms (such as neural networks and support vector machines) face difficulties in capturing all features of large search spaces. This paper proposes a new way of automatically tuning stencil computations based on structural learning. By organizing the training data in a set of partially-sorted samples (i.e., rankings), the problem is formulated as a ranking prediction model, which translates to an ordinal regression problem. Our approach can be coupled with an iterative compilation method or used as a standalone autotuner. We demonstrate its potential by comparing it with state-of-the-art iterative compilation methods on a set of nine stencil codes and by analyzing the quality of the obtained ranking in terms of Kendall rank correlation coefficients

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF

    Application of machine learning for polyhedral optimizations

    Get PDF

    Predictable GPUs Frequency Scaling for Energy and Performance

    Get PDF
    Dynamic voltage and frequency scaling (DVFS) is an important solution to balance performance and energy consumption, and hardware vendors provide management libraries that allow the programmer to change both memory and core frequencies. The possibility to manually set these frequencies is a great opportunity for application tuning, which can focus on the best applicationdependent setting. However, this task is not straightforward because of the large set of possible configurations and because of the multi-objective nature of the problem, which minimizes energy consumption and maximizes performance. This paper proposes a method to predict the best core and memory frequency configurations on GPUs for an input OpenCL kernel. Our modeling approach, based on machine learning, first predicts speedup and normalized energy over the default frequency configuration. Then, it combines the two models into a multi-objective one that predicts a Pareto-set of frequency configurations. The approach uses static code features, is built on a set of carefully designed microbenchmarks, and can predict the best frequency settings of a new kernel without executing it. Test results show that our modeling approach is very accurate on predicting extrema points and Pareto set for ten out of twelve test benchmarks, and discover frequency configurations that dominate the default configuration in either energy or performance.DFG, 360291326, CELERITY: Innovative Modellierung für Skalierbare Verteilte Laufzeitsystem

    Iterative Schedule Optimization for Parallelization in the Polyhedron Model

    Get PDF
    In high-performance computing, one primary objective is to exploit the performance that the given target hardware can deliver to the fullest. Compilers that have the ability to automatically optimize programs for a specific target hardware can be highly useful in this context. Iterative (or search-based) compilation requires little or no prior knowledge and can adapt more easily to concrete programs and target hardware than static cost models and heuristics. Thereby, iterative compilation helps in situations in which static heuristics do not reflect the combination of input program and target hardware well. Moreover, iterative compilation may enable the derivation of more accurate cost models and heuristics for optimizing compilers. In this context, the polyhedron model is of help as it provides not only a mathematical representation of programs but, more importantly, a uniform representation of complex sequences of program transformations by schedule functions. The latter facilitates the systematic exploration of the set of legal transformations of a given program. Early approaches to purely iterative schedule optimization in the polyhedron model do not limit their search to schedules that preserve program semantics and, thereby, suffer from the need to explore numbers of illegal schedules. More recent research ensures the legality of program transformations but presumes a sequential rather than a parallel execution of the transformed program. Other approaches do not perform a purely iterative optimization. We propose an approach to iterative schedule optimization for parallelization and tiling in the polyhedron model. Our approach targets loop programs that profit from data locality optimization and coarse-grained loop parallelization. The schedule search space can be explored either randomly or by means of a genetic algorithm. To determine a schedule's profitability, we rely primarily on measuring the transformed code's execution time. While benchmarking is accurate, it increases the time and resource consumption of program optimization tremendously and can even make it impractical. We address this limitation by proposing to learn surrogate models from schedules generated and evaluated in previous runs of the iterative optimization and to replace benchmarking by performance prediction to the extent possible. Our evaluation on the PolyBench 4.1 benchmark set reveals that, in a given setting, iterative schedule optimization yields significantly higher speedups in the execution of the program to be optimized. Surrogate performance models learned from training data that was generated during previous iterative optimizations can reduce the benchmarking effort without strongly impairing the optimization result. A prerequisite for this approach is a sufficient similarity between the training programs and the program to be optimized
    corecore