50 research outputs found

    Context-based search for 3D models

    Full text link

    Music classification by low-rank semantic mappings

    Get PDF
    A challenging open question in music classification is which music representation (i.e., audio features) and which machine learning algorithm is appropriate for a specific music classification task. To address this challenge, given a number of audio feature vectors for each training music recording that capture the different aspects of music (i.e., timbre, harmony, etc.), the goal is to find a set of linear mappings from several feature spaces to the semantic space spanned by the class indicator vectors. These mappings should reveal the common latent variables, which characterize a given set of classes and simultaneously define a multi-class linear classifier that classifies the extracted latent common features. Such a set of mappings is obtained, building on the notion of the maximum margin matrix factorization, by minimizing a weighted sum of nuclear norms. Since the nuclear norm imposes rank constraints to the learnt mappings, the proposed method is referred to as low-rank semantic mappings (LRSMs). The performance of the LRSMs in music genre, mood, and multi-label classification is assessed by conducting extensive experiments on seven manually annotated benchmark datasets. The reported experimental results demonstrate the superiority of the LRSMs over the classifiers that are compared to. Furthermore, the best reported classification results are comparable with or slightly superior to those obtained by the state-of-the-art task-specific music classification methods

    Machine learning techniques for music information retrieval

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2015The advent of digital music has changed the rules of music consumption, distribution and sales. With it has emerged the need to effectively search and manage vast music collections. Music information retrieval is an interdisciplinary field of research that focuses on the development of new techniques with that aim in mind. This dissertation addresses a specific aspect of this field: methods that automatically extract musical information exclusively based on the audio signal. We propose a method for automatic music-based classification, label inference, and music similarity estimation. Our method consist in representing the audio with a finite set of symbols and then modeling the symbols time evolution. The symbols are obtained via vector quantization in which a single codebook is used to quantize the audio descriptors. The symbols time evolution is modeled via a first order Markov process. Based on systematic evaluations we carried out on publicly available sets, we show that our method achieves performances on par with most techniques found in literature. We also present and discuss the problems that appear when computers try to classify or annotate songs using the audio as the only source of information. In our method, the separation of quantization process from the creation and training of classification models helped us in that analysis. It enabled us to examine how instantaneous sound attributes (henceforth features) are distributed in term of musical genre, and how designing codebooks specially tailored for these distributions affects the performance of ours and other classification systems commonly used for this task. On this issue, we show that there is no apparent benefit in seeking a thorough representation of the feature space. This is a bit unexpected since it goes against the assumption that features carry equally relevant information loads and somehow capture the specificities of musical facets, implicit in many genre recognition methods. Label inference is the task of automatically annotating songs with semantic words - this tasks is also known as autotagging. In this context, we illustrate the importance of a number of issues, that in our perspective, are often overlooked. We show that current techniques are fragile in the sense that small alterations in the set of labels may lead to dramatically different results. Furthermore, through a series of experiments, we show that autotagging systems fail to learn tag models capable to generalize to datasets of different origins. We also show that the performance achieved with these techniques is not sufficient to be able to take advantage of the correlations between tags.Fundação para a Ciência e a Tecnologia (FCT

    Music classification by low-rank semantic mappings

    Get PDF
    A challenging open question in music classification is which music representation (i.e., audio features) and which machine learning algorithm is appropriate for a specific music classification task. To address this challenge, given a number of audio feature vectors for each training music recording that capture the different aspects of music (i.e., timbre, harmony, etc.), the goal is to find a set of linear mappings from several feature spaces to the semantic space spanned by the class indicator vectors. These mappings should reveal the common latent variables, which characterize a given set of classes and simultaneously define a multi-class linear classifier that classifies the extracted latent common features. Such a set of mappings is obtained, building on the notion of the maximum margin matrix factorization, by minimizing a weighted sum of nuclear norms. Since the nuclear norm imposes rank constraints to the learnt mappings, the proposed method is referred to as low-rank semantic mappings (LRSMs). The performance of the LRSMs in music genre, mood, and multi-label classification is assessed by conducting extensive experiments on seven manually annotated benchmark datasets. The reported experimental results demonstrate the superiority of the LRSMs over the classifiers that are compared to. Furthermore, the best reported classification results are comparable with or slightly superior to those obtained by the state-of-the-art task-specific music classification methods

    Retrieval and Annotation of Music Using Latent Semantic Models

    Get PDF
    PhDThis thesis investigates the use of latent semantic models for annotation and retrieval from collections of musical audio tracks. In particular latent semantic analysis (LSA) and aspect models (or probabilistic latent semantic analysis, pLSA) are used to index words in descriptions of music drawn from hundreds of thousands of social tags. A new discrete audio feature representation is introduced to encode musical characteristics of automatically-identified regions of interest within each track, using a vocabulary of audio muswords. Finally a joint aspect model is developed that can learn from both tagged and untagged tracks by indexing both conventional words and muswords. This model is used as the basis of a music search system that supports query by example and by keyword, and of a simple probabilistic machine annotation system. The models are evaluated by their performance in a variety of realistic retrieval and annotation tasks, motivated by applications including playlist generation, internet radio streaming, music recommendation and catalogue searchEngineering and Physical Sciences Research Counci

    Person Recognition in Personal Photo Collections

    Full text link
    Recognising persons in everyday photos presents major challenges (occluded faces, different clothing, locations, etc.) for machine vision. We propose a convnet based person recognition system on which we provide an in-depth analysis of informativeness of different body cues, impact of training data, and the common failure modes of the system. In addition, we discuss the limitations of existing benchmarks and propose more challenging ones. Our method is simple and is built on open source and open data, yet it improves the state of the art results on a large dataset of social media photos (PIPA).Comment: Accepted to ICCV 2015, revise

    3D Shape Knowledge Graph for Cross-domain and Cross-modal 3D Shape Retrieval

    Full text link
    With the development of 3D modeling and fabrication, 3D shape retrieval has become a hot topic. In recent years, several strategies have been put forth to address this retrieval issue. However, it is difficult for them to handle cross-modal 3D shape retrieval because of the natural differences between modalities. In this paper, we propose an innovative concept, namely, geometric words, which is regarded as the basic element to represent any 3D or 2D entity by combination, and assisted by which, we can simultaneously handle cross-domain or cross-modal retrieval problems. First, to construct the knowledge graph, we utilize the geometric word as the node, and then use the category of the 3D shape as well as the attribute of the geometry to bridge the nodes. Second, based on the knowledge graph, we provide a unique way for learning each entity's embedding. Finally, we propose an effective similarity measure to handle the cross-domain and cross-modal 3D shape retrieval. Specifically, every 3D or 2D entity could locate its geometric terms in the 3D knowledge graph, which serve as a link between cross-domain and cross-modal data. Thus, our approach can achieve the cross-domain and cross-modal 3D shape retrieval at the same time. We evaluated our proposed method on the ModelNet40 dataset and ShapeNetCore55 dataset for both the 3D shape retrieval task and cross-domain 3D shape retrieval task. The classic cross-modal dataset (MI3DOR) is utilized to evaluate cross-modal 3D shape retrieval. Experimental results and comparisons with state-of-the-art methods illustrate the superiority of our approach
    corecore