32 research outputs found

    Intelligent and Green Energy LED Backlighting Techniques of Stereo Liquid Crystal Displays

    Get PDF

    ๋ฌด์•ˆ๊ฒฝ์‹ 3 ์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์™€ ํˆฌ์‚ฌํ˜• ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์ด์šฉํ•œ ๊นŠ์ด ์œตํ•ฉ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ด€์ฐฐ ํŠน์„ฑ ํ–ฅ์ƒ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 8. ์ด๋ณ‘ํ˜ธ.In this dissertation, various methods for enhancing the viewing characteristics of the depth-fused display are proposed with combination of projection-type displays or integral imaging display technologies. Depth-fused display (DFD) is one kind of the volumetric three-dimensional (3D) displays composed of multiple slices of depth images. With a proper weighting to the luminance of the images on the visual axis of the observer, it provides continuous change of the accommodation within the volume confined by the display layers. Because of its volumetric property depth-fused 3D images can provide very natural volumetric images, but the base images should be located on the exact positions on the viewing axis, which gives complete superimpose of the images. If this condition is not satisfied, the images are observed as two separated images instead of continuous volume. This viewing characteristic extremely restricts the viewing condition of the DFD resulting in the limited applications of DFDs. While increasing the number of layers can result in widening of the viewing angle and depth range by voxelizing the reconstructed 3D images, the required system complexity also increases along with the number of image layers. For solving this problem with a relatively simple configuration of the system, hybrid techniques are proposed for DFDs. The hybrid technique is the combination of DFD with other display technologies such as projection-type displays or autostereoscopic displays. The projection-type display can be combined with polarization-encoded depth method for projection of 3D information. Because the depth information is conveyed by polarization states, there is no degradation in spatial resolution or video frame in the reconstructed 3D images. The polarized depth images are partially selected at the stacked polarization selective screens according to the given depth states. As the screen does not require any active component for the reconstruction of images, projection part and reconstruction part can be totally separated. Also, the projection property enables the scalability of the reconstructed images like a conventional projection display, which can give immersive 3D experience by providing large 3D images. The separation of base images due to the off-axis observation can be compensated by shifting the base images along the viewers visual axis. It can be achieved by adopting multi-view techniques. While conventional multi-view displays provide different view images for different viewers positions, it can be used for showing shifted base images for DFD. As a result, multiple users can observe the depth-fused 3D images at the same time. Another hybrid method is the combination of floating method with DFD. Convex lens can optically translate the depth position of the object. Based on this principle, the optical gap between two base images can be extended beyond the physical dimension of the images. Employing the lens with a short focal length, the gap between the base images can be greatly reduced. For a practical implementation of the system, integral imaging method can be used because it is composed of array of lenses. The floated image can be located in front of the lens as well as behind the lens. Both cases result in the expansion of depth range beyond the physical gap of base images, but real-mode floating enables interactive application of the DFD. In addition to the expansion of depth range, the viewing angle of the hybrid system can be increased by employing tracking method. Viewer tracking method also enables dynamic parallax for the DFD with real-time update of base images along with the viewing direction of the tracked viewers. Each chapter of this dissertation explains the theoretical background of the proposed hybrid method and demonstrates the feasibility of the idea with experimental systems.Abstract i Contents iv List of Figures vi List of Tables xii Chapter 1 Introduction 1 1.1 Overview of three-dimensional displays 1 1.2 Motivation 7 1.3 Scope and organization 9 Chapter 2 Multi-layered depth-fused display with projection-type display 10 2.1 Introduction 10 2.2 Polarization-encoded depth information for depth-fused display 12 2.3 Visualization with passive scattering film 16 2.4 Summary 30 Chapter 3 Compact depth-fused display with enhanced depth and viewing angle 31 3.1 Introduction 31 3.2 Enhancement of viewing characteristics 34 3.2.1 Viewing angle enhancement using multi-view method 34 3.2.2 Depth enhancement using integral imaging 37 3.2.3 Depth and viewing angle enhancement 39 3.3 Implementation of experimental system with enhanced viewing parameters 44 3.4 Summary 51 Chapter 4 Real-mode depth-fused display with viewer tracking 52 4.1 Introduction 52 4.2 Viewer tracking method 55 4.2.1 Viewer-tracked depth-fused display 55 4.2.2 Viewer-tracked integral imaging for a depth-fused display 58 4.3 Implementation of viewer-tracked integral imaging 63 4.4 Summary 71 Chapter 5 Conclusion 72 Bibliography 74 ์ดˆ๋ก 83Docto

    High Performance Three-Dimensional Display Based on Polymer-Stabilized Blue Phase Liquid Crystal

    Get PDF
    Autostereoscopic 2D/3D (two-dimension/three-dimension) switchable display has been attracting great interest in research and practical applications for several years. Among different autostereoscopic solutions, direction-multiplexed 3D displays based on microlens array or parallax barrier are viewed as the most promising candidates, due to their compatibility with conventional 2D display technologies. These 2D/3D switchable display system designs rely on fast switching display panels and photonics devices, including adaptive focus microlens array and switchable slit array. Polymer-stabilized blue phase liquid crystal (PS-BPLC) material provides a possible solution to meet the aforementioned fast response time requirement. However, present display and photonic devices based on blue phase liquid crystals suffer from several drawbacks, such as low contrast ratio, relatively large hysteresis and short lifetime. In this dissertation, we investigate the material properties of PS-BPLC so as to improve the performance of PS-BPLC devices. Then we propose several PS-BPLC devices for the autostereoscopic 2D/3D switchable display system designs. In the first part we evaluate the optical rotatory power (ORP) of blue phase liquid crystal, which is proven to be the primary reason for causing the low contrast ratio of PS-BPLC display systems. Those material parameters affecting the ORP of PS-BPLC are investigated and an empirical equation is proposed to calculate the polarization rotation angle in a PS-BPLC cell. Then several optical compensation methods are proposed to compensate the impact of ORP and to improve the contrast ratio of a display system. The pros and cons of each solution are discussed accordingly. In the second part, we propose two adaptive focus microlens array structures and a high efficiency switchable slit array based on the PS-BPLC materials. By optimizing the design parameters, these devices can be applied to the 2D/3D switchable display systems. In the last section, we focus on another factor that affects the performance and lifetime of PS-BPLC devices and systems: the UV exposure condition. The impact of UV exposure wavelength, dosage, uniformity, and photo-initiator are investigated. We demonstrate that by optimizing the UV exposure condition, we can reduce the hysteresis of PS-BPLC and improve its long term stability

    ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ํ•€ํ™€ ๋ฐฉ์‹ ์ง‘์ ์˜์ƒ์— ๊ธฐ๋ฐ˜ํ•œ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ฐœ์„ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐ๊ณตํ•™๋ถ€, 2012. 8. ์ด๋ณ‘ํ˜ธ.์ตœ๊ทผ 10๋…„๊ฐ„, ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์žฅ์€ ๋ฏธ์„ธ ๊ณต์ •๊ณผ ์œ ๊ธฐ ๋ฐ ๋ฌด๊ธฐ ๋ฐœ๊ด‘ ์†Œ์ž์˜ ๋ฐœ๋‹ฌ๋กœ ์ธํ•˜์—ฌ ๊ธ‰์†๋„๋กœ ํ‰ํŒ ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์žฅ์œผ๋กœ ์ „ํ™˜๋˜์—ˆ๊ณ , ๋ณด๋‹ค ํ˜„์‹ค๊ฐ ์žˆ๋Š” ์˜์ƒ์„ ์žฌ์ƒํ•˜๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ์„ ํ†ตํ•˜์—ฌ 2์ฐจ์› ๊ณ ํ™”์งˆ ์˜์ƒ์˜ ์‹œ๋Œ€์—์„œ 3์ฐจ์› ์ž…์ฒด ์˜์ƒ์˜ ์‹œ๋Œ€๋กœ ์ „ํ™˜๋˜์–ด ๊ฐ€๊ณ  ์žˆ๋‹ค. ์ด๋ฏธ TV์‹œ์žฅ๊ณผ ์˜ํ™” ์‹œ์žฅ์—๋Š” ํŽธ๊ด‘ ๋ฐฉ์‹์˜ ์•ˆ๊ฒฝ์„ ์ด์šฉํ•œ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์ž๋ฆฌ๋ฅผ ์žก๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋“ค์„ ํ™œ์šฉํ•œ ์ปจํ…์ธ  ๋˜ํ•œ ์ง€์†์ ์œผ๋กœ ์ œ์ž‘๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ถ๊ทน์ ์ธ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ํ–ฅํ•œ ์—ฐ๊ตฌ๋Š” ํ˜„์žฌ์˜ ์•ˆ๊ฒฝ์‹ ๋ฐฉ์‹์—์„œ ์•ˆ๊ฒฝ์„ ์ฐฉ์šฉํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๋‹ค์‹œ์ ์˜ 3์ฐจ์› ์˜์ƒ์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹์œผ๋กœ ์ง‘์ค‘ ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹ ์ค‘ ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์— ๊ธฐ๋ฐ˜์„ ๋‘” 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ฐœ์„ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ์—ฐ๊ตฌ๋œ ๋‹ค์–‘ํ•œ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹ ์ค‘, ํŒจ๋Ÿด๋ž™์Šค ๋ฐฐ๋ฆฌ์–ด, ๋ Œํ‹ฐํ˜๋Ÿฌ์™€ ๊ฐ™์€ ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ์ง‘์ ์˜์ƒ์€ ๊ฐ€์žฅ ์ƒ์šฉํ™”์— ๊ฐ€๊นŒ์šด ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ƒ์šฉํ™”๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ์ˆ , ๊ด€์ฐฐ์ž์˜ ์ธ์ง€์š”์ธ, ๊ทธ๋ฆฌ๊ณ  ๊ด‘ํ•™์  ์ •๋ณด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์˜ ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ์˜ ๋ฌธ์ œ์ ๋“ค์— ๋Œ€ํ•œ ๋…ผ์˜๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์ค‘, ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ํ•€ํ™€(pinhole)ํ˜• ์ง‘์ ์˜์ƒ์„ ์ด ์„ธ ๊ฐ€์ง€ ์ธก๋ฉด์—์„œ ๊ฐœ์„ ํ•˜๋Š” ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ๋‚ด์šฉ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ๋จผ์ € ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ์ˆ ์ ์ธ ์ธก๋ฉด์—์„œ๋Š”, ์ „๊ณ„๋ฐœ๊ด‘์†Œ์ž(electroluminescent film) ํ˜น์€ ํ‰ํŒ ๋””์Šคํ”Œ๋ ˆ์ด์— ๋ฐฐ์—ด๋œ ์ปฌ๋Ÿฌ ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์˜ ์‹œ์•ผ๊ฐ, ํ•ด์ƒ๋„, ๊ด‘์„  ์ง‘์ ๋„ ๊ทธ๋ฆฌ๊ณ  2์ฐจ์›/3์ฐจ์› ๋ณ€ํ™˜์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ € ๊นŠ์ด ํ‘œํ˜„ ๋ฒ”์œ„๊ฐ€ ๊ธฐ๋ณธ์ ์œผ๋กœ ๋„“์€ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์˜ 2์ฐจ์›/3์ฐจ์› ๋ณ€ํ™˜์œผ๋กœ์˜ ํ™•์žฅ์„ ์œ„ํ•˜์—ฌ ์ „๊ณ„๋ฐœ๊ด‘์†Œ์ž์— ๊ธฐ๋ฐ˜์„ ๋‘” ์ƒˆ๋กœ์šด ๊ด‘์› ๋ณ€ํ™˜ ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ „๊ณ„๋ฐœ๊ด‘์†Œ์ž๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ ์ž๋ฅด๊ฑฐ๋‚˜ ํœ˜๊ฑฐ๋‚˜ ํ˜น์€ ๊ตฌ๋ฉ์„ ๋šซ์–ด๋„ ๋ฐœ๊ด‘์— ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š๋Š” ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด, ์ „๊ณ„๋ฐœ๊ด‘์†Œ์ž์— ๊ท ์ผํ•œ ํ•€ํ™€์„ ๋ฐฐ์—ดํ•˜์—ฌ ๊ธฐ์กด์˜ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์œผ๋กœ ์ด์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ, 2์ฐจ์›/3์ฐจ์› ๋ณ€ํ™˜์ด ๊ฐ€๋Šฅํ•œ ์ง‘์ ์˜์ƒ์„ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๊ณ , ๊ตฌ๋ถ€๋ฆฌ๋ฉด์„œ ๋ฐœ๊ด‘ ์ƒํƒœ๋ฅผ ์œ ์ง€ํ•˜๋Š” ํŠน์„ฑ์„ ์ด์šฉํ•˜์—ฌ ๊ด‘์‹œ์•ผ๊ฐ์„ ๊ฐ–๋Š” ๋ฐ˜์› ํ˜•ํƒœ์˜ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋กœ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ 360๋„ ์ „์ฒด์—์„œ ๊ด€์ฐฐ์ด ๊ฐ€๋Šฅํ•œ ์ง‘์ ์˜์ƒ ๊ธฐ๋ฐ˜์˜ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋กœ ํ™•์žฅํ•˜์—ฌ ์ œ์•ˆํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ˜„์žฌ ๋Œ€์ค‘์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์•ก์ • ๋””์Šคํ”Œ๋ ˆ์ด์ƒ์˜ ์ปฌ๋Ÿฌ ํ•„ํ„ฐ ์ธต์„ ํ•€ํ™€ ๋ฐฐ์—ด๊ณผ ๋น” ํ”„๋กœ์ ํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ด‘์„  ์ง‘์ ๋„, ํ•ด์ƒ๋„ ๊ทธ๋ฆฌ๊ณ  ๊นŠ์ด ํ‘œํ˜„ ๋ฒ”์œ„๋ฅผ ํ™•์žฅํ•œ ํ•€ํ™€ํ˜• ์ง‘์ ์˜์ƒ์œผ๋กœ ์ œ์•ˆํ•œ๋‹ค. ์‹ค์ œ ์•ก์ • ๋””์Šคํ”Œ๋ ˆ์ด์ƒ์˜ ์ปฌ๋Ÿฌ ํ•„ํ„ฐ๋Š” 3๊ฐ€์ง€ ์ƒ‰์œผ๋กœ ๋‚˜๋‰˜์–ด์ ธ ์žˆ๊ณ , ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ๊ฐ ์ƒ‰ ์˜์—ญ์ด ๋‹ค๋ฅธ ํ•€ํ™€ ๋ฐฐ์—ด๋กœ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด์™€ ํ•จ๊ป˜ ๋น” ํ”„๋กœ์ ํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ, ํ•œ ์š”์†Œ ์˜์ƒ์˜ ์˜์—ญ์ด ๊ธฐ์กด์˜ ๋ฐฉ์‹์— ๋น„ํ•ด ๋„“์–ด์ง€๊ณ  ์„œ๋กœ ์นจ๋ฒ”ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์–ด ํ•ด์ƒ๋„์™€ ๊ด‘์„  ์ง‘์ ๋„๊ฐ€ ์ตœ๋Œ€ 3๋ฐฐ ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ง‘์ ์˜์ƒ์˜ ๊ฐœ์„ ๊ณผ ํ•จ๊ป˜ ๋””์Šคํ”Œ๋ ˆ์ด ์ธก๋ฉด์—์„œ์˜ ๊ฐœ์„ ์—์„œ๋Š”, ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ํŠน์„ฑ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ 1์ฐจ์› ์ง‘์ ์˜์ƒ์„ ๋ถ„์„ํ•˜๊ณ  ์œตํ•ฉํ•˜๋Š” ์—ฐ๊ตฌ๋„ ์ง„ํ–‰ํ•œ๋‹ค. ๋‘ ๊ฐ€์ง€์˜ ๋‹ค๋ฅธ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์‹์„ ์œตํ•ฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, light field๋ฅผ ์ด์šฉํ•œ ๊ณต๊ฐ„-๊ฐ๋„ ๋ถ„ํฌ ๋ถ„์„๊ณผ ์ด์˜ ์ฃผํŒŒ์ˆ˜์˜์—ญ์—์„œ์˜ ๋ถ„์„์„ ์ง„ํ–‰ํ•œ๋‹ค. ๋ถ„์„์„ ํ†ตํ•ด ์–ป์–ด์ง„ ๋‘ ๋ฐฉ์‹์˜ ๊ณต๊ฐ„-๊ฐ๋„ ๋ถ„ํฌ ํŠน์ง•์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ 1์ฐจ์› ์ง‘์ ์˜์ƒ์„ ์‹œ๋ถ„ํ•  ๋ฐ ๋ถ€ํ”ฝ์…€๋ถ„ํ• ์„ ํ†ตํ•ด ํ•œ ๋””์Šคํ”Œ๋ ˆ์ด ์ƒ์—์„œ ๊ตฌํ˜„ํ•˜์—ฌ, ๋ณด๋‹ค ํ’ˆ์งˆ์ด ํ–ฅ์ƒ๋œ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋˜ ๋‹ค๋ฅธ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ณผ์ œ๋Š” ๊ด€์ฐฐ์ž์˜ ์ธ์ง€ ์š”์†Œ๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด์™€ ์ง‘์ ์˜์ƒ์—์„œ์˜ ๊นŠ์ด ํ•ด์ƒ๋„ ๋ฐ ์กฐ์ ˆ๋ ฅ ๋ฐ˜์‘์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. ๋จผ์ € ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด ์ƒ์—์„œ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์ž์ฒด์˜ ํ•ด์ƒ๋„์™€ cardboard ํšจ๊ณผ์— ์˜ํ•œ ์ธ์ง€ ๊นŠ์ด ํ•ด์ƒ๋„ ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด๊ธฐ ์œ„ํ•ด, ๋‹ค์‹œ์  ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ๋ฐ˜์˜ 3์ฐจ์› ๋ฐฉ์†ก ํ™˜๊ฒฝ์„ ๊ตฌ์ถ•ํ•˜๊ณ , ๋””์Šคํ”Œ๋ ˆ์ด ์ž์ฒด์˜ ๊นŠ์ด ํ•ด์ƒ๋„ ํ‘œํ˜„์˜ ์ œํ•œ, ๋‹ค์‹œ์  ์˜์ƒ ํ•ฉ์„ฑ ๊ณผ์ • ์ค‘์˜ ๊นŠ์ด ํ•ด์ƒ๋„ ํ‘œํ˜„์˜ ์ œํ•œ ๊ทธ๋ฆฌ๊ณ  cardboard ํšจ๊ณผ์— ์˜ํ•œ ๊นŠ์ด ํ•ด์ƒ๋„ ์ œํ•œ์„ ์ˆ˜์‹์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ๊ด€์ฐฐ์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์„ค๋ฌธ์„ ์ง„ํ–‰ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๋‹ค์‹œ์  3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๋ฐฉ์†ก ํ™˜๊ฒฝ์—์„œ 3์ฐจ์› ์˜์ƒ์„ ์œ„ํ•œ ๊นŠ์ด์ •๋ณด์˜ ํ•ด์ƒ๋„๋ฅผ ์œ„ํ•œ ๊ธฐ์ค€์„ ์ œ์‹œํ•œ๋‹ค. ๋˜ํ•œ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์—์„œ ์ˆ˜๋ ด-์กฐ์ ˆ์˜ ์ถฉ๋Œ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋…ผ์˜๋˜๊ณ  ์žˆ๋Š” ์ดˆ๋‹ค์‹œ์  ์กฐ๊ฑด๊ณผ ์ง‘์ ์˜์ƒ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ฐํžˆ๊ธฐ ์œ„ํ•˜์—ฌ, ์ง‘์ ์˜์ƒ์—์„œ ์ดˆ๋‹ค์‹œ์  ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ์˜์—ญ์„ ๋ถ„์„ ๋ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ง„ํ–‰ํ•˜๊ณ  ์ด ์˜์—ญ ์•ˆ๊ณผ ๋ฐ–์—์„œ ๊ด€์ฐฐ์ž์˜ ์กฐ์ ˆ๋ ฅ์„ ์ธก์ •ํ•œ๋‹ค. ์ด ๊ณผ์ •์„ ํ†ตํ•ด, ์ง‘์ ์˜์ƒ์—์„œ ์ดˆ๋‹ค์‹œ์  ์กฐ๊ฑด๊ณผ ๊ด€์ฐฐ์ž์˜ ์กฐ์ ˆ๋ ฅ ๋ณ€ํ™”์™€์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์ด์šฉํ•œ ๋˜ ๋‹ค๋ฅธ ๊ณผ์ œ์ธ ๊ด‘ํ•™์  ์ •๋ณด ์ฒ˜๋ฆฌ์—์„œ๋Š”, ์š”์†Œ์˜์ƒ๊ณผ ๋‹ค์‹œ์  ์˜์ƒ์„ ์ด์šฉํ•œ ๊นŠ์ด ์ถ”์ถœ๊ณผ 3์ฐจ์› ์˜์ƒ์˜ ์žฌํš๋“์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. Optical flow์— ๊ธฐ๋ฐ˜์„ ๋‘” ๋ณด๋‹ค ์ •ํ™•ํ•œ ๊นŠ์ด ์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ์š”์†Œ์˜์ƒ์—์„œ ์ถ”์ถœํ•œ ๋ถ€์˜์ƒ์˜ ๊นŠ์ด๋ฅผ ์ถ”์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ์ด์˜ ์‘์šฉ์— ๋Œ€ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ ์„ค๋ช…ํ•œ๋‹ค. Optical flow์— ๊ธฐ๋ฐ˜์„ ๋‘” 3์ฐจ์› ๋ฌผ์ฒด์˜ ๊นŠ์ด ์ถ”์ถœ์„ ์ปดํ“จํ„ฐ๋ฅผ ์ด์šฉํ•œ ์‹ค์‚ฌ 3์ฐจ์› ์˜์ƒ์˜ ์žฌํš๋“์— ํ™œ์šฉํ•˜๋Š” ๊ฒฝ์šฐ, ์ง‘์ ์˜์ƒ์˜ ๋ณธ์งˆ์ ์ธ ๋ฌธ์ œ์ธ pseudoscopic ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์„ ํ†ตํ•œ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ์ˆ , ๊ด€์ฐฐ์ž์˜ ์ธ์ง€์š”์ธ, ๊ทธ๋ฆฌ๊ณ  ๊ด‘ํ•™์  ์ •๋ณด์ฒ˜๋ฆฌ ๊ธฐ์ˆ ์ ์ธ ์ธก๋ฉด์—์„œ์˜ ๊ฐœ์„  ๋ฐฉ๋ฒ•๋“ค์€ ์ถ”ํ›„ ๋ฌด์•ˆ๊ฒฝ์‹ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์žฅ์˜ ํ™•๋Œ€์™€ ๊ฐ€์ •์šฉ TV์‹œ์žฅ์œผ๋กœ์˜ ์ง„์ถœ์— ํฌ๊ฒŒ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค.This dissertation presents studies on improvement of three-dimensional (3D) displays based on multi-view display and pinhole-type integral imaging. Among various types of 3D displays, integral imaging and multi-view display such as parallax barrier and lenticular 3D display are almost commercialized autostereoscopic 3D display. For commercialization, autostereoscopic 3D display has three issues that are limitation of display technology, human factors related on human visual system and optical information processing technology. In this dissertation, the author will address the studies about the improvement methods for multi-view display and pinhole-type integral imaging in three issues. In the issue of display technology, the improvement methods of pinhole-type integral imaging using electroluminescent (EL) film and color filters on display panel are proposed to enhance the viewing angle, resolution, ray density and two-dimensional (2D)/3D convertibility. For large expressible depth range and 2D/3D convertibility in pinhole-type integral imaging, pinhole-type integral imaging is modified by new light source conversion layer based on EL film. The EL film has the advantage that it can operate continuously even when it is cut or punctured. Using this characteristic, the author generates an array of pinholes on an EL film to form a point light source array for reconstructing 3D images based on integral imaging. Taking advantage of the flexibility of EL films, a 2D/3D convertible integral imaging system with a wide viewing angle using a curved EL film is proposed which is extended to 360-degree viewable cylindrical 3D display system. For enhancement of ray density, resolution and expressible depth range in pinhole-type integral imaging, the system using color filter pinhole array on liquid crystal display panel with projection scheme is proposed. A color filter structure on liquid crystal display panel acts as pinhole array in integral imaging with separation of color channel. The use of color filter pinhole array and projection scheme can enlarge the region of one-elemental image and improve the resolution and ray density remarkably. In addition to the improvement of pinhole-type integral imaging, analysis and convergence of multi-view display and one-dimensional (1D) integral imaging are presented for improvement of characteristics in autostereoscopic display. For the convergence of two different autostereoscopic 3D display, multi-view display and integral imaging, light field analysis of spatio-angular distribution and its frequency domain analysis are performed. From the analysis, the convergence type of autostereoscopic 3D display based on multi-view display and 1D integral imaging is proposed by using time-multiplexing and sub-pixel multiplexing technique. On another issue in autostereoscopic 3D display, the depth resolution and accommodation response of human factors in multi-view display and integral imaging are researched. To find the effect of fundamental depth resolution and cardboard effect to the perceived depth resolution in multi-view display, the fundamental depth resolution and the cardboard effect from the synthesis process in the multi-view 3D TV broadcasting are analyzed and a subjective test is performed. In addition, the analysis and measurement of accommodation response of integral imaging with satisfying super multi-view display is performed to reveal the relation between the accommodation response of integral imaging and super multi-view condition. On the other issue of autostereoscopic 3D display, the optical information processing from elemental image and multi-view images in depth extraction and computational pickup method without pseudoscopic problem is presented. A more accurate depth extraction algorithm using optical flow from sub-images of elemental image is proposed and its applications are also presented in this dissertation.Abstract i Contents iv List of Figures ix List of Tables xvii Chapter 1 Introduction 1 1.1 Overview of autostereoscopic three-dimensional displays 1 1.2 Motivation of this dissertation 4 1.3 Scope and organization 7 Chapter 2 Enhancement of pinhole-type integral imaging using electroluminescent film and color filters on display panel 11 2.1 Integral imaging system using an electroluminescent film backlight for three-dimensional/two-dimensional convertibility and a curved structure 11 2.1.1 Introduction 11 2.1.2 Principles of 3D/2D convertible integral imaging using EL film 14 2.1.3 Experimental results 23 2.1.4 Conclusion 29 2.2 360-viewable cylindrical integral imaging system using a three-dimensionaltwo-dimensional switchable and flexible backlight 30 2.2.1 Introduction 30 2.2.2 Principles of the 360-degree viewable cylindrical integral imaging system 33 2.2.3 Analysis on the characteristic parameters and viewing zone of the 360-degree viewable cylindrical integral imaging system 36 2.2.4 Experiment 39 2.2.5 Conclusion 43 2.3 Integral imaging using color filter pinhole array on display panel 44 2.3.1 Introduction and motivation 44 2.3.2 Principles of proposed method 47 2.3.3 Experimental setup and results 54 2.3.4 Conclusion 60 Chapter 3 Analysis and convergence of multi-view display and one-dimensional integral imaging 62 3.1 Comparison of multi-view display and integral imaging 62 3.1.1 Principles of multi-view display and one-dimensional integral imaging 63 3.1.2 Principles of multi-view display and integral imaging in pickup methods 67 3.1.3 Analysis of multi-view display and integral imaging in light filed 73 3.2 Computational reacquisition of a real three-dimensional object for integral imaging without matching of pickup and display lens array 80 3.2.1 Introduction 80 3.2.2 Depth extraction and triangular mesh reconstruction from sub-images using optical flow 81 3.2.3 Conversion from point cloud to face texture information 83 3.2.4 Experimental result 85 3.2.5 Conclusion 87 3.3 Time-multiplexing and sub-pixel mapping of multi-view display and integral imaging 89 3.3.1 Design parameters of multi-view display and integral imaging 90 3.3.2 Convergence type of autostereoscopic display using time-multiplexing or sub-pixel mapping of multi-view display and one-dimensional integral imaging 91 3.3.3 Experimental result 94 Chapter 4 Perceived depth resolution and accommodation response of multi-view display and integral imaging 99 4.1 Effect of fundamental depth resolution and cardboard effect to perceived depth resolution on multi-view display 99 4.1.1 Introduction 100 4.1.2 Fundamental depth resolution from specification of slanted lenticular display 102 4.1.3 View synthesis parameters from specification of stereo pickup and multi-view display 105 4.1.4 Stereo pickup and multi-view synthesis of 3D object with varying depth resolution 109 4.1.5 Numerical comparison of synthesized view images in PSNR and NCC with varying depth resolution 113 4.1.6 Subjective test for limitation of perceived depth resolution in multi-view display 115 4.1.7 Conclusion 122 4.2 Effect of viewing region satisfying super multi-view condition in integral imaging 124 4.2.1 Introduction 124 4.2.2 Analysis of viewing region satisfying super multi-view condition in integral imaging 125 4.2.3 Expressible depth range and size of 3D object in integral imaging with super multi-view condition 128 4.2.4 Simulation 129 4.2.5 Accommodation response with super multi-view condition in integral imaging 131 4.2.6 Experimental result 132 4.2.7 Experimental result 136 Chapter 5 Conclusion 137 Bibliography 140 Appendix 148 ํ•œ๊ธ€ ์ดˆ๋ก 149Docto

    Adaptive micro-optical phase modulators based on liquid crystal technology

    Get PDF
    Menciรณn Internacional en el tรญtulo de doctorThis thesis began with the project โ€œAdvanced Devices of Liquid Crystal and Electroluminescent Organic Diodes. Hybrid Applications for 3D Visionโ€ funded by the Spanish government. The goal of this project was the development of optical devices to achieve 3D vision in portable devices without glasses or external elements. In order to achieve the goals of this project, solutions based on liquid crystal are considered. Specifically, adaptive micro-optical phase modulators based on liquid crystal technology are researched in depth. The gradient of the refractive index varies spatially the phase delay experienced by an impinging wavefront of a light beam. By using this effect, any refractive optical element may be reproduced with the proper voltage gradient applied to the sample. This is the main operating principle of the micro-optical phase modulators proposed in this thesis. As original contribution of this thesis, a novel algorithm to solve the position of a nematic liquid crystal molecular director is proposed. Once the liquid crystal is completely characterized, the developing of a specific model to know the electro-optic response of the micro-optical phase modulators is also relevant. Another original contribution is a novel equivalent electric circuit for modeling liquid crystal microlenses. An interesting feature of the model is that it provides an analytical solution for microlenses with modal and hole-patterned electrode schemes, by using a simple software tool. The required driving scheme (modal or hole-patterned) can be predicted. These theories have been validated by experimental results. For more complex devices, the equations are solved by Finite Element Method. A new manufacturing protocol is proposed to make the first set of modal microlens arrays. As a first step simple devices (monopixel cells) are fabricated in order to do a complete study of the liquid crystal electro-optical behavior. The characterization of the liquid crystal electro-optical parameters is determinant in order to design more complex devices. Refractive index and permittivity are the most important features considered. These parameters have been characterized to validate the proposed theoretical modelling of the liquid crystal molecular position. These devices have required special fabrication processes as well as a special characterization set-up especially in terms of size resolution or arrangement complexity. A custom micropositioner is developed and control software is programmed in relation to these tasks. The software automates the characterization process giving directly measured results of: phase modulation, focal distance, thickness or aberrations. These results have made it possible to validate experimentally the proposed electrical modeling for micro-optical devices. Demonstration of the viability of the liquid crystal lenticular technology has been carried out for an autostereoscopic application. This scheme provides the observer with the option of changing between horizontal and vertical views through his portable autostereoscopic display. Finally, last research contributions of this work of thesis have taken advantage of the deep knowledge of the electro-optical properties of lenticular devices for autostereoscopic applications, to guide the design of refined micro-optical phase modulators. Adaptive axicons and optical vortices are specially emphasized because their relevance from both, the scientific and technological point of view.Esta tesis se iniciรณ con el proyecto de investigaciรณn โ€œDispositivos avanzados de cristal lรญquido y diodos orgรกnicos electroluminiscentes. Aplicaciones hรญbridas para visiรณn 3Dโ€, financiado por el gobierno espaรฑol. El objetivo de este proyecto consistรญa en el desarrollo de dispositivos รณpticos para lograr visiรณn 3D en dispositivos portรกtiles sin necesidad de gafas o elementos externos. Con el fin de alcanzar los objetivos de este proyecto, se consideran soluciones basadas en cristal lรญquido. En concreto, moduladores adaptativos de fase micro-รณpticos basados en tecnologรญa de cristal lรญquido. El gradiente del รญndice de refracciรณn varรญa espacialmente el retardo de fase experimentado por un frente de onda incidente. Mediante el uso de este efecto, cualquier elemento รณptico refractivo puede ser reproducido mediante un gradiente de tensiรณn adecuado aplicado a la muestra. Este es el principio de funcionamiento de los moduladores de fase micro-รณpticos propuestos en esta tesis. Como aportaciรณn original de esta tesis, se propone un nuevo algoritmo para resolver el director molecular de un cristal lรญquido nemรกtico. Una vez que el cristal lรญquido estรก completamente caracterizado, es necesario el desarrollo de un modelo especรญfico para saber la respuesta electro-รณptica de los moduladores de fase micro-รณpticos. Otra contribuciรณn original, consiste en un circuito elรฉctrico equivalente para el modelado de microlentes de cristal lรญquido. Una caracterรญstica interesante del modelo es que proporciona una soluciรณn analรญtica para microlentes con esquemas de electrodos modales y โ€œhole patternedโ€. Se puede predecir la topologรญa necesaria en funciรณn de los parรกmetros de construcciรณn. Estas teorรญas han sido validadas por resultados experimentales. Para los dispositivos mรกs complejos, las ecuaciones se resuelven por el mรฉtodo de elementos finitos. Se propone un nuevo protocolo de fabricaciรณn para hacer microlentes modales. Como primer paso se fabrican dispositivos sencillos (cรฉlulas monopixel) con el fin de hacer un estudio completo del comportamiento electro-รณptico del cristal lรญquido. La caracterizaciรณn de los parรกmetros electro-รณpticos de cristal lรญquido es determinante para diseรฑar dispositivos mรกs complejos. El รญndice de refracciรณn y la permitividad son las caracterรญsticas mรกs importantes. Estos parรกmetros se han caracterizado para validar el modelo teรณrico de la posiciรณn molecular de cristal lรญquido. Estos dispositivos han requerido procesos de fabricaciรณn complejos, asรญ como montajes de caracterizaciรณn determinados. Se ha desarrollado un microposicionador y un software de control. El software automatiza el proceso de caracterizaciรณn dando resultados de: modulaciรณn de fase, distancia focal, grosor o aberraciones. Estos resultados han permitido validar experimentalmente el modelado elรฉctrico propuesto para dispositivos micro-รณpticos. La demostraciรณn de la viabilidad de la tecnologรญa propuesta se ha llevado a cabo mediante un dispositivo autoestereoscรณpico. Este dispositivo ofrece al observador la opciรณn de cambiar entre vistas horizontal y vertical a travรฉs de su pantalla autoestereoscรณpica portรกtil. Finalmente, los รบltimos aportes de investigaciรณn de este trabajo de tesis se han aprovechado del profundo conocimiento de las propiedades electro-รณpticas de los dispositivos lenticulares para aplicaciones autoestereoscรณpicas. Se pueden destacar los axicones adaptativos y vรณrtices รณpticos por su relevancia tanto desde el punto de vista cientรญfico como tecnolรณgico.Este trabajo ha sido desarrollado en el marco de los proyectos TEC2009-13991-C02-01 financiado por el Ministerio de Ciencia e Innovaciรณn y FACTOTEM2 S2009/ESP-1781 financiado por la Comunidad de Madrid.Programa Oficial de Doctorado en Ingenierรญa Elรฉctrica, Electrรณnica y AutomรกticaPresidente: Ignacio Raรบl Matรญas Maestro.- Secretario: Antonia Isabel Pรฉrez Garcilรณpez.- Vocal: Dimitrios C. Zografopoulo

    Perceptually Optimized Visualization on Autostereoscopic 3D Displays

    Get PDF
    The family of displays, which aims to visualize a 3D scene with realistic depth, are known as "3D displays". Due to technical limitations and design decisions, such displays create visible distortions, which are interpreted by the human vision as artefacts. In absence of visual reference (e.g. the original scene is not available for comparison) one can improve the perceived quality of the representations by making the distortions less visible. This thesis proposes a number of signal processing techniques for decreasing the visibility of artefacts on 3D displays. The visual perception of depth is discussed, and the properties (depth cues) of a scene which the brain uses for assessing an image in 3D are identified. Following the physiology of vision, a taxonomy of 3D artefacts is proposed. The taxonomy classifies the artefacts based on their origin and on the way they are interpreted by the human visual system. The principles of operation of the most popular types of 3D displays are explained. Based on the display operation principles, 3D displays are modelled as a signal processing channel. The model is used to explain the process of introducing distortions. It also allows one to identify which optical properties of a display are most relevant to the creation of artefacts. A set of optical properties for dual-view and multiview 3D displays are identified, and a methodology for measuring them is introduced. The measurement methodology allows one to derive the angular visibility and crosstalk of each display element without the need for precision measurement equipment. Based on the measurements, a methodology for creating a quality profile of 3D displays is proposed. The quality profile can be either simulated using the angular brightness function or directly measured from a series of photographs. A comparative study introducing the measurement results on the visual quality and position of the sweet-spots of eleven 3D displays of different types is presented. Knowing the sweet-spot position and the quality profile allows for easy comparison between 3D displays. The shape and size of the passband allows depth and textures of a 3D content to be optimized for a given 3D display. Based on knowledge of 3D artefact visibility and an understanding of distortions introduced by 3D displays, a number of signal processing techniques for artefact mitigation are created. A methodology for creating anti-aliasing filters for 3D displays is proposed. For multiview displays, the methodology is extended towards so-called passband optimization which addresses Moirรฉ, fixed-pattern-noise and ghosting artefacts, which are characteristic for such displays. Additionally, design of tuneable anti-aliasing filters is presented, along with a framework which allows the user to select the so-called 3d sharpness parameter according to his or her preferences. Finally, a set of real-time algorithms for view-point-based optimization are presented. These algorithms require active user-tracking, which is implemented as a combination of face and eye-tracking. Once the observer position is known, the image on a stereoscopic display is optimised for the derived observation angle and distance. For multiview displays, the combination of precise light re-direction and less-precise face-tracking is used for extending the head parallax. For some user-tracking algorithms, implementation details are given, regarding execution of the algorithm on a mobile device or on desktop computer with graphical accelerator

    ํˆฌ๋ช…ํ•œ ๋งค์งˆ์—์„œ์˜ ๊ด‘ ๊ฒฝ๋กœ ๋ถ„์„์„ ์ด์šฉํ•œ ์ง‘์•ฝ์  3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ์ด๋ณ‘ํ˜ธ.๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ด‘ํ•™์ ์œผ๋กœ ํˆฌ๋ช…ํ•œ ๋งค์งˆ์—์„œ์˜ ๊ด‘ ๊ฒฝ๋กœ ๋ถ„์„์„ ๋ฐ”ํƒ•์œผ๋กœ ์ง‘์•ฝ์ ์ธ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ๋…ผ์˜ํ•œ๋‹ค. 3์ฐจ์› ์˜์ƒ ์žฅ์น˜๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ์š”์†Œ์™€ ์‹œ์ฒญ์ž ์‚ฌ์ด์˜ ๋ฌผ๋ฆฌ์ ์ธ ๊ฑฐ๋ฆฌ๋ฅผ ์ค„์ด๋Š” ๊ฒƒ์€ ์ง‘์•ฝ์ ์ธ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๋Š” ์ง๊ด€์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด ์‹œ์Šคํ…œ์˜ ํฌ๊ธฐ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ ๋” ๋งŽ์€ ์–‘์˜ 3์ฐจ์› ์˜์ƒ ์ •๋ณด๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๊ฒƒ ๋˜ํ•œ ์ง‘์•ฝ์  3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ์˜๋ฏธํ•œ๋‹ค. ๋†’์€ ๋Œ€์—ญํญ๊ณผ ์ž‘์€ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์ง‘์•ฝ์  3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์Œ์˜ ๋‘ ๊ฐ€์ง€ ๊ด‘ํ•™ ํ˜„์ƒ์„ ์ด์šฉํ•œ๋‹ค. ๋“ฑ๋ฐฉ์„ฑ ๋ฌผ์งˆ์—์„œ์˜ ์ „๋ฐ˜์‚ฌ ํŠน์„ฑ๊ณผ ์ด๋ฐฉ์„ฑ ๋ฌผ์งˆ์—์„œ์˜ ๋ณต๊ตด์ ˆ ํŠน์„ฑ์ด๋‹ค. ๊ฐ€์‹œ๊ด‘ ์˜์—ญ์—์„œ ๋น›์„ ํˆฌ๊ณผ์‹œํ‚ค๋Š” ๋‘ ๋งค์งˆ์˜ ๊ณ ์œ  ๊ด‘ํ•™ ํŠน์„ฑ์„ ๊ธฐ์กด์˜ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ด‘ ๊ฒฝ๋กœ ์ถ”์ ์„ ํ†ตํ•˜์—ฌ ๋ถ„์„ํ•œ๋‹ค. ๊ด‘ ๋„ํŒŒ๋กœ์˜ ์ „๋ฐ˜์‚ฌ ํŠน์„ฑ์€ ์ง‘์•ฝ์  ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉํ•œ๋‹ค. ํˆฌ์‚ฌ ๊ด‘ํ•™๊ณ„์˜ ์˜์ƒ ์ •๋ณด๋Š” ๊ด‘ ๋„ํŒŒ๋กœ๋กœ ์ž…์‚ฌ, ๋‚ด๋ถ€์—์„œ ์ „๋ฐ˜์‚ฌ๋ฅผ ํ†ตํ•˜์—ฌ ์ง„ํ–‰ํ•˜๊ณ , ์ด์— ์ˆ˜ํ‰ ํˆฌ์‚ฌ ๊ฑฐ๋ฆฌ๋Š” ๊ด‘ ๋„ํŒŒ๋กœ์˜ ๋‘๊ป˜๋กœ ์ œํ•œ๋œ๋‹ค. ๋‹ค์ˆ˜์˜ ์ „๋ฐ˜์‚ฌ ์ดํ›„ ์˜์ƒ ์ •๋ณด๋Š” ๊ด‘ ๋„ํŒŒ๋กœ์˜ ์ถœ์‚ฌ ๋ฉด์„ ํ†ตํ•ด ๋น ์ ธ๋‚˜๊ฐ€๊ณ , ๋ Œ์ฆˆ์— ์˜ํ•˜์—ฌ ์ตœ์  ์‹œ์ฒญ ์ง€์ ์—์„œ ์‹œ์ ์„ ํ˜•์„ฑํ•œ๋‹ค. ๊ด‘ ๋„ํŒŒ๋กœ ๋‚ด๋ถ€์—์„œ์˜ ๊ด‘ ๊ฒฝ๋กœ๋ฅผ ๋“ฑ๊ฐ€ ๋ชจ๋ธ์„ ํ†ตํ•˜์—ฌ ์กฐ์‚ฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์ˆ˜์˜ ํˆฌ์‚ฌ ๊ด‘ํ•™๊ณ„๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ๋œ ๋‹ค์ˆ˜์˜ ์‹œ์  ์˜์ƒ์ด ์™œ๊ณก๋˜๋Š” ๊ฒƒ์„ ๋ถ„์„ํ•˜๊ณ  ๋ณด์ •ํ•œ๋‹ค. 10๊ฐœ์˜ ์‹œ์ ์„ ์ œ๊ณตํ•˜๋Š” ์ง‘์•ฝ์  ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ๊ฒ€์ฆํ•œ๋‹ค. ํ–ฅ์ƒ๋œ ๋Œ€์—ญํญ ํŠน์„ฑ์„ ๊ฐ€์ง„ ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์™€ ๋‹ค์ค‘ ์ดˆ์  ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด ๊ตฌํ˜„์„ ์œ„ํ•œ ์ด๋ฐฉ์„ฑ ํŒ์„ ์ด์šฉํ•œ ํŽธ๊ด‘ ๋‹ค์ค‘ํ™” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋น›์˜ ํŽธ๊ด‘ ์ƒํƒœ, ์ด๋ฐฉ์„ฑ ํŒ์˜ ๊ด‘์ถ• ๋ฐฉํ–ฅ์— ๋”ฐ๋ผ ๊ด‘ ๊ฒฝ๋กœ๊ฐ€ ๋‹ฌ๋ผ์ง„๋‹ค. ์ธก๋ฉด ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๊ด‘ ๊ฒฝ๋กœ ์ „ํ™˜์€ ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ์ˆ ๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ์‹œ์ ์„ ์ธก๋ฉด ๋ฐฉํ–ฅ์œผ๋กœ ๋‘ ๋ฐฐ๋กœ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ๊นŠ์ด ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๊ด‘ ๊ฒฝ๋กœ ์ „ํ™˜์€ ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด์—์„œ ๋‹ค์ค‘ ์ดˆ์  ๊ธฐ๋Šฅ์„ ๊ตฌํ˜„ํ•œ๋‹ค. ๊ด‘ ๊ฒฝ๋กœ ์ถ”์  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ด๋ฐฉ์„ฑ ํŒ์˜ ๋ชจ์–‘, ๊ด‘์ถ•, ํŒŒ์žฅ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ด‘ ๊ฒฝ๋กœ ์ „ํ™˜์„ ๋ถ„์„ํ•œ๋‹ค. ๊ฐ๊ฐ์˜ ๊ธฐ๋Šฅ์— ๋งž๋„๋ก ์„ค๊ณ„๋œ ์ด๋ฐฉ์„ฑ ํŒ๊ณผ ํŽธ๊ด‘ ํšŒ์ „์ž๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ, ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด์™€ ๋‹ค์ค‘ ์ดˆ์  ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋Œ€์—ญํญ์ด 2๋ฐฐ ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ฐ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์‹œ์ž‘ํ’ˆ์„ ์ œ์ž‘ํ•˜๊ณ , ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ด‘ ๋„ํŒŒ๋กœ์™€ ๋ณต๊ตด์ ˆ ๋ฌผ์งˆ์„ ์ด์šฉํ•˜์—ฌ ๊ทธ ๊ด‘ ๊ฒฝ๋กœ๋ฅผ ๋ถ„์„, ๋Œ€ํ˜•์˜ ๋‹ค์ค‘ ํˆฌ์‚ฌ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ๊ณผ ๊ฐœ์ธ ์‚ฌ์šฉ์ž์˜ ํ—ค๋“œ ๋งˆ์šดํŠธ ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๊ณ , ํ‘œํ˜„ ๊ฐ€๋Šฅํ•œ ์ •๋ณด๋Ÿ‰์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๊ด‘ ๋„ํŒŒ๋กœ์™€ ์ด๋ฐฉ์„ฑ ํŒ์€ ๊ธฐ์กด์˜ 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ๊ณผ ์‰ฝ๊ฒŒ ๊ฒฐํ•ฉ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ํ–ฅํ›„ ์†Œํ˜•๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ค‘๋Œ€ํ˜• 3์ฐจ์› ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์˜ ์ง‘์•ฝํ™”์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.This dissertation investigates approaches for realizing compact three-dimensional (3D) display systems based on optical path analysis in optically transparent medium. Reducing the physical distance between 3D display apparatuses and an observer is an intuitive method to realize compact 3D display systems. In addition, it is considered compact 3D display systems when they present more 3D data than conventional systems while preserving the size of the systems. For implementing compact 3D display systems with high bandwidth and minimized structure, two optical phenomena are investigated: one is the total internal reflection (TIR) in isotropic materials and the other is the double refraction in birefringent crystals. Both materials are optically transparent in visible range and ray tracing simulations for analyzing the optical path in the materials are performed to apply the unique optical phenomenon into conventional 3D display systems. An optical light-guide with the TIR is adopted to realize a compact multi-projection 3D display system. A projection image originated from the projection engine is incident on the optical light-guide and experiences multiple folds by the TIR. The horizontal projection distance of the system is effectively reduced as the thickness of the optical light-guide. After multiple folds, the projection image is emerged from the exit surface of the optical light-guide and collimated to form a viewing zone at the optimum viewing position. The optical path governed by the TIR is analyzed by adopting an equivalent model of the optical light-guide. Through the equivalent model, image distortion for multiple view images in the optical light-guide is evaluated and compensated. For verifying the feasibility of the proposed system, a ten-view multi-projection 3D display system with minimized projection distance is implemented. To improve the bandwidth of multi-projection 3D display systems and head-mounted display (HMD) systems, a polarization multiplexing technique with the birefringent plate is proposed. With the polarization state of the image and the direction of optic axis of the birefringent plate, the optical path of rays varies in the birefringent material. The optical path switching in the lateral direction is applied in the multi-projection system to duplicate the viewing zone in the lateral direction. Likewise, a multi-focal function in the HMD is realized by adopting the optical path switching in the longitudinal direction. For illuminating the detailed optical path switching and the image characteristic such as an astigmatism and a color dispersion in the birefringent material, ray tracing simulations with the change of optical structure, the optic axis, and wavelengths are performed. By combining the birefringent material and a polarization rotation device, the bandwidth of both the multi-projection 3D display and the HMD is doubled in real-time. Prototypes of both systems are implemented and the feasibility of the proposed systems is verified through experiments. In this dissertation, the optical phenomena of the TIR and the double refraction realize the compact 3D display systems: the multi-projection 3D display for public and the multi-focal HMD display for individual. The optical components of the optical light-guide and the birefringent plate can be easily combined with the conventional 3D display system and it is expected that the proposed method can contribute to the realization of future 3D display systems with compact size and high bandwidth.Chapter 1 Introduction 10 1.1 Overview of modern 3D display providing high quality 3D images 10 1.2 Motivation of this dissertation 15 1.3 Scope and organization 18 Chapter 2 Compact multi-projection 3D displays with optical path analysis of total internal reflection 20 2.1 Introduction 20 2.2 Principle of compact multi-projection 3D display system using optical light-guide 23 2.2.1 Multi-projection 3D display system 23 2.2.2 Optical light-guide for multi-projection 3D display system 26 2.2.3 Analysis on image characteristics of projection images in optical light-guide 34 2.2.4 Pre-distortion method for view image compensation 44 2.3 Implementation of prototype of multi-projection 3D display system with reduced projection distance 47 2.4 Summary and discussion 52 Chapter 3 Compact multi-projection 3D displays with optical path analysis of double refraction 53 3.1 Introduction 53 3.2 Principle of viewing zone duplication in multi-projection 3D display system 57 3.2.1 Polarization-dependent optical path switching in birefringent crystal 57 3.2.2 Analysis on image formation through birefringent plane-parallel plate 60 3.2.3 Full-color generation of dual projection 64 3.3 Implementation of prototype of viewing zone duplication of multi-projection 3D display system 68 3.3.1 Experimental setup for viewing zone duplication of multi-projection 3D display system 68 3.3.2 Luminance distribution measurement of viewing zone duplication of multi-projection 3D display system 74 3.4 Summary and discussion 79 Chapter 4 Compact multi-focal 3D HMDs with optical path analysis of double refraction 81 4.1 Introduction 81 4.2 Principle of multi-focal 3D HMD system 86 4.2.1 Multi-focal 3D HMD system using Savart plate 86 4.2.2 Astigmatism compensation by modified Savart plate 89 4.2.3 Analysis on lateral chromatic aberration of extraordinary plane 96 4.2.4 Additive type compressive light field display 101 4.3 Implementation of prototype of multi-focal 3D HMD system 104 4.4 Summary and discussion 112 Chapter 5 Conclusion 114 Bibliography 117 Appendix 129 ์ดˆ ๋ก 130Docto

    Head tracking two-image 3D television displays

    Get PDF
    The research covered in this thesis encompasses the design of novel 3D displays, a consideration of 3D television requirements and a survey of autostereoscopic methods is also presented. The principle of operation of simple 3D display prototypes is described, and design of the components of optical systems is considered. A description of an appropriate non-contact infrared head tracking method suitable for use with 3D television displays is also included. The thesis describes how the operating principle of the displays is based upon a twoimage system comprising a pair of images presented to the appropriate viewers' eyes. This is achieved by means of novel steering optics positioned behind a direct view liquid crystal display (LCD) that is controlled by a head position tracker. Within the work, two separate prototypes are described, both of which provide 3D to a single viewer who has limited movement. The thesis goes on to describe how these prototypes can be developed into a multiple-viewer display that is suitable for television use. A consideration of 3D television requirements is documented showing that glassesfree viewing (autostereoscopic), freedom of viewer movement and practical designs are important factors for 3D television displays. The displays are novel in design in several important aspects that comply with the requirements for 3D television. Firstly they do not require viewers to wear special glasses, secondly the displays allow viewers to move freely when viewing and finally the design of the displays is practical with a housing size similar to modem television sets and a cost that is not excessive. Surveys of other autostereoscopic methods included within the work suggest that no contemporary 3D display offers all of these important factors
    corecore