1,488 research outputs found

    Generation of correlated Rayleigh fading channels for accurate simulationof promising wireless communication systems

    Get PDF
    In this paper, a generalized method is proposed for the accurate simulation of equal/ unequal power correlated Rayleigh fading channels to overcome the shortcomings of existing methods. Spatial and spectral correlations are also considered in this technique for different transmission conditions. It employs successive coloring for the inphase and quadrature components of successive signals using real correlation vector of successive signal envelopes rather than complex covariance matrix of the Gaussian signals which is utilized in conventional methods. Any number of fading signals with any desired correlations of successive envelope pairs in the interval [0, 1] can be generated with high accuracy. Moreover, factorization of the desired covariance matrix is avoided to overcome the shortcomings and high computational complexity of conventional methods. Extensive simulations of different representative scenarios demonstrate the effectiveness of the proposedtechnique. The simplicity and accuracy of this method will help the researchers to study and simulate the impact of fading correlation on the performance evaluation of various multi-antenna and multicarrier communication systems. Moreover, it enables the engineers for efficient design and deployment of new schemes for feasible wireless application

    System level evaluation of interference in vehicular mobile broadband networks

    Get PDF

    A Differential Feedback Scheme Exploiting the Temporal and Spectral Correlation

    Full text link
    Channel state information (CSI) provided by limited feedback channel can be utilized to increase the system throughput. However, in multiple input multiple output (MIMO) systems, the signaling overhead realizing this CSI feedback can be quite large, while the capacity of the uplink feedback channel is typically limited. Hence, it is crucial to reduce the amount of feedback bits. Prior work on limited feedback compression commonly adopted the block fading channel model where only temporal or spectral correlation in wireless channel is considered. In this paper, we propose a differential feedback scheme with full use of the temporal and spectral correlations to reduce the feedback load. Then, the minimal differential feedback rate over MIMO doubly selective fading channel is investigated. Finally, the analysis is verified by simulations

    Estimation of Autoregressive Fading Channels Based on Two Cross-Coupled H∞ Filters

    Get PDF
    This paper deals with the on-line estimation of time-varying frequency-flat Rayleigh fading channels based on training sequences and using H∞ filtering. When the fading channel is approximated by an autoregressive (AR) process, the AR model parameters must be estimated. As their direct estimations from the available noisy observations at the receiver may yield biased values, the joint estimation of both the channel and its AR parameters must be addressed. Among the existing solutions to this joint estimation issue, Expectation Maximization (EM) algorithm or crosscoupled filter based approaches can be considered. They usually require Kalman filtering which is optimal in the H2 sense provided that the initial state, the driving process and measurement noise are independent, white and Gaussian. However, in real cases, these assumptions may not be satisfied. In addition, the state-space matrices and the noise variances are not necessarily accurately estimated. To take into account the above problem,we propose to use two crosscoupled H∞ filters. This method makes it possible to provide robust estimation of the fading channel and its AR parameters
    corecore