16,629 research outputs found

    Forecasting Price Relationships among U.S Tree Nuts Prices

    Get PDF
    This paper investigates a vector auto regression model, using the Johansen cointegration technique, and the autoregressive integrated moving average time series models to determine the better model for forecasting US tree nut prices over the period 1992-2006. The Johansen contegration test shows lack of long run relationship among pecan, walnut, and almond prices. As such, only autoregressive integrated moving average-type models were used in forecasting U.S. nut prices.substitutability, cointegration, tree nuts, long-run equilibrium forecasting, Demand and Price Analysis, Production Economics,

    Theoretical Foundations of Autoregressive Models for Time Series on Acyclic Directed Graphs

    Get PDF
    Three classes of models for time series on acyclic directed graphs are considered. At first a review of tree-structured models constructed from a nested partitioning of the observation interval is given. This nested partitioning leads to several resolution scales. The concept of mass balance allowing to interpret the average over an interval as the sum of averages over the sub-intervals implies linear restrictions in the tree-structured model. Under a white noise assumption for transition and observation noise there is an change-of-resolution Kalman filter for linear least squares prediction of interval averages \shortcite{chou:1991}. This class of models is generalized by modeling transition noise on the same scale in linear state space form. The third class deals with models on a more general class of directed acyclic graphs where nodes are allowed to have two parents. We show that these models have a linear state space representation with white system and coloured observation noise

    Modelling and trading the Greek stock market with gene expression and genetic programing algorithms

    Get PDF
    This paper presents an application of the gene expression programming (GEP) and integrated genetic programming (GP) algorithms to the modelling of ASE 20 Greek index. GEP and GP are robust evolutionary algorithms that evolve computer programs in the form of mathematical expressions, decision trees or logical expressions. The results indicate that GEP and GP produce significant trading performance when applied to ASE 20 and outperform the well-known existing methods. The trading performance of the derived models is further enhanced by applying a leverage filter

    A Methodology for Robust Multiproxy Paleoclimate Reconstructions and Modeling of Temperature Conditional Quantiles

    Full text link
    Great strides have been made in the field of reconstructing past temperatures based on models relating temperature to temperature-sensitive paleoclimate proxies. One of the goals of such reconstructions is to assess if current climate is anomalous in a millennial context. These regression based approaches model the conditional mean of the temperature distribution as a function of paleoclimate proxies (or vice versa). Some of the recent focus in the area has considered methods which help reduce the uncertainty inherent in such statistical paleoclimate reconstructions, with the ultimate goal of improving the confidence that can be attached to such endeavors. A second important scientific focus in the subject area is the area of forward models for proxies, the goal of which is to understand the way paleoclimate proxies are driven by temperature and other environmental variables. In this paper we introduce novel statistical methodology for (1) quantile regression with autoregressive residual structure, (2) estimation of corresponding model parameters, (3) development of a rigorous framework for specifying uncertainty estimates of quantities of interest, yielding (4) statistical byproducts that address the two scientific foci discussed above. Our statistical methodology demonstrably produces a more robust reconstruction than is possible by using conditional-mean-fitting methods. Our reconstruction shares some of the common features of past reconstructions, but also gains useful insights. More importantly, we are able to demonstrate a significantly smaller uncertainty than that from previous regression methods. In addition, the quantile regression component allows us to model, in a more complete and flexible way than least squares, the conditional distribution of temperature given proxies. This relationship can be used to inform forward models relating how proxies are driven by temperature

    A partial correlation vine based approach for modeling and forecasting multivariate volatility time-series

    Full text link
    A novel approach for dynamic modeling and forecasting of realized covariance matrices is proposed. Realized variances and realized correlation matrices are jointly estimated. The one-to-one relationship between a positive definite correlation matrix and its associated set of partial correlations corresponding to any vine specification is used for data transformation. The model components therefore are realized variances as well as realized standard and partial correlations corresponding to a daily log-return series. As such, they have a clear practical interpretation. A method to select a regular vine structure, which allows for parsimonious time-series and dependence modeling of the model components, is introduced. Being algebraically independent the latter do not underlie any algebraic constraint. The proposed model approach is outlined in detail and motivated along with a real data example on six highly liquid stocks. The forecasting performance is evaluated both with respect to statistical precision and in the context of portfolio optimization. Comparisons with Cholesky decomposition based benchmark models support the excellent prediction ability of the proposed model approach
    • …
    corecore