18 research outputs found

    The design and implementation of a microprocessor controlled adaptive filter

    Get PDF
    This thesis describes the construction and implementation of a microprocessor controlled recursive adaptive filter applied as a noise canceller. It describes the concept of the adaptive noise canceller, a method of estimating the received signal corrupted with additive interference (noise). This canceller has two inputs, the primary input containing the corrupted signal and the reference input consisting of the additive noise correlated in some unknown way to the primary noise. The reference input is filtered and subtracted from the primary input without degrading the desired components of the signal. This filtering process is adaptive and based on Widrow-Hoff Least-Mean-Square algorithm. Adaptive filters are programmable and have the capability to adjust their own parameters in situations where minimum piori knowledge is available about the inputs. For recursive filters, these parameters include feed-forward (non-recursive) as well as feedback (recursive) coefficients. A new design and implementation of the adaptive filter is suggested which uses a high speed 68000 microprocessor to accomplish the coefficients updating operation. Many practical problems arising in the hardware implementation are investigated. Simulation results illustrate the ability of the adaptive noise canceller to have an acceptable performance when the coefficients updating operation is carried out once every N sampling periods. Both simulation and hardware experimental results are in agreement

    VLSI signal processing through bit-serial architectures and silicon compilation

    Get PDF

    Modular decomposition techniques for stored-logic digital filters

    Get PDF
    Digital filtering is an important signal processing technique whose theory is now well established. At present, however, there are no well-defined and systematic methods available for realising digital filters in hardware. This project aims to develop such methods which are general and technology independent, and adopts a systems and sub-systems design philosophy. The realisation problem is approached in a new way using concepts from finite-automata theory and implementing complete digital filter sections as stored-logic units. Two methods are introduced and developed. [Continues.

    Engineering evaluations and studies. Volume 2: Exhibit B, part 1

    Get PDF
    Ku-band communication system analysis, S-band system investigations, payload communication investigations, shuttle/TDRSS and GSTDN compatibility analysis are discussed

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    Get PDF
    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators

    Design of application-specific instruction set processors with asynchronous methodology for embedded digital signal processing applications.

    Get PDF
    Kwok Yan-lun Andy.Thesis submitted in: November 2004.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 133-137).Abstracts in English and Chinese.Abstract --- p.i摘要 --- p.iiAcknowledgements --- p.iiiList of Figures --- p.viiList of Tables and Examples --- p.xChapter 1. --- Introduction --- p.1Chapter 1.1. --- Motivation --- p.1Chapter 1.2. --- Objective and Approach --- p.4Chapter 1.3. --- Thesis Organization --- p.5Chapter 2. --- Related Work --- p.7Chapter 2.1. --- Coverage --- p.7Chapter 2.2. --- ASIP Design Methodologies --- p.8Chapter 2.3. --- Asynchronous Technology on Processors --- p.12Chapter 2.4. --- Summary --- p.14Chapter 3. --- Asynchronous Design Methodology --- p.15Chapter 3.1. --- Overview --- p.15Chapter 3.2. --- Asynchronous Design Style --- p.17Chapter 3.2.1. --- Micropipelines --- p.17Chapter 3.2.2. --- Fine-grain Pipelining --- p.20Chapter 3.2.3. --- Globally-Asynchronous Locally-Synchronous (GALS) Design --- p.22Chapter 3.3. --- Advantages of GALS in ASIP Design --- p.27Chapter 3.3.1. --- Reuse of Synchronous and Asynchronous IP --- p.27Chapter 3.3.2. --- Fine Tuning of Performance and Power Consumption --- p.27Chapter 3.3.3. --- Synthesis-based Design Flow --- p.28Chapter 3.4. --- Design of GALS Asynchronous Wrapper --- p.28Chapter 3.4.1. --- Handshake Protocol --- p.28Chapter 3.4.2. --- Pausible Clock Generator --- p.29Chapter 3.4.3. --- Port Controllers --- p.30Chapter 3.4.4. --- Performance of the Asynchronous Wrapper --- p.33Chapter 3.5. --- Summary --- p.35Chapter 4. --- Platform Based ASIP Design Methodology --- p.36Chapter 4.1. --- Platform Based Approach --- p.36Chapter 4.1.1. --- The Definition of Our Platform --- p.37Chapter 4.1.2. --- The Definition of the Platform Based Design --- p.37Chapter 4.2. --- Platform Architecture --- p.38Chapter 4.2.1. --- The Nature of DSP Algorithms --- p.38Chapter 4.2.2. --- Design Space of Datapath Optimization --- p.46Chapter 4.2.3. --- Proposed Architecture --- p.49Chapter 4.2.4. --- The Strategy of Realizing an Optimized Datapath --- p.51Chapter 4.2.5. --- Pipeline Organization --- p.59Chapter 4.2.6. --- GALS Partitioning --- p.61Chapter 4.2.7. --- Operation Mechanism --- p.63Chapter 4.3. --- Overall Design Flow --- p.67Chapter 4.4. --- Summary --- p.70Chapter 5. --- Design of the ASIP Platform --- p.72Chapter 5.1. --- Design Goal --- p.72Chapter 5.2. --- Instruction Fetch --- p.74Chapter 5.2.1. --- Instruction fetch unit --- p.74Chapter 5.2.2. --- Zero-overhead loops and Subroutines --- p.75Chapter 5.3. --- Instruction Decode --- p.77Chapter 5.3.1. --- Instruction decoder --- p.77Chapter 5.3.2. --- The Encoding of Parallel and Complex Instructions --- p.80Chapter 5.4. --- Datapath --- p.81Chapter 5.4.1. --- Base Functional Units --- p.81Chapter 5.4.2. --- Functional Unit Wrapper Interface --- p.83Chapter 5.5. --- Register File Systems --- p.84Chapter 5.5.1. --- Memory Hierarchy --- p.84Chapter 5.5.2. --- Register File Organization --- p.85Chapter 5.5.3. --- Address Generation --- p.93Chapter 5.5.4. --- Load and Store --- p.98Chapter 5.6. --- Design Verification --- p.100Chapter 5.7. --- Summary --- p.104Chapter 6. --- Case Studies --- p.105Chapter 6.1. --- Objective --- p.105Chapter 6.2. --- Approach --- p.105Chapter 6.3. --- Based versus Optimized --- p.106Chapter 6.3.1. --- Matrix Manipulation --- p.106Chapter 6.3.2. --- Autocorrelation --- p.109Chapter 6.3.3. --- CORDIC --- p.110Chapter 6.4. --- Optimized versus Advanced Commercial DSPs --- p.113Chapter 6.4.1. --- Introduction to TMS320C62x and SC140 --- p.113Chapter 6.4.2. --- Results --- p.115Chapter 6.5. --- Summary --- p.116Chapter 7. --- Conclusion --- p.118Chapter 7.1. --- When ASIPs encounter asynchronous --- p.118Chapter 7.2. --- Contributions --- p.120Chapter 7.3. --- Future Directions --- p.121Chapter A --- Synthesis of Extended Burst-Mode Asynchronous Finite State Machine --- p.122Chapter B --- Base Instruction Set --- p.124Chapter C --- Special Registers --- p.127Chapter D --- Synthesizable Model of GALS Wrapper --- p.130Reference --- p.13

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Implementation of neural networks as CMOS integrated circuits

    Get PDF
    corecore