172 research outputs found

    Vision-Aided Navigation using Tracked Lankmarks

    Get PDF
    This thesis presents vision-based state estimation algorithms for autonomous vehicles to navigate within GPS-denied environments. To accomplish this objective, an approach is developed that utilizes a priori information about the environment. In particular, the algorithm leverages recognizable ‘landmarks’ in the environment, the positions of which are known in advance, to stabilize the state estimate. Measurements of the position of one or more landmarks in the image plane of a monocular camera are then filtered using an extended Kalman filter (EKF) with data from a traditional inertial measurement unit (IMU) consisting of accelerometers and rate gyros to produce the state estimate. Additionally, the EKF algorithm is adapted to accommodate a stereo camera configuration to measure the distance to a landmark using parallax. The performances of the state estimation algorithms for both the monocular and stereo camera configurations are tested and compared using simulation studies with a quadcopter UAV model. State estimation results are then presented using flight data from a quadcopter UAV instrumented with an IMU and a GoPro camera. It is shown that the proposed landmark navigation method is capable of preventing IMU drift errors by providing a GPS-like measurement when landmarks can be identified. Additionally, the landmark method pairs well with non a priori measurements for interims when landmarks are not available

    Collision Avoidance of Two Autonomous Quadcopters

    Get PDF
    Traffic collision avoidance systems (TCAS) are used in order to avoid incidences of mid-air collisions between aircraft. We present a game-theoretic approach of a TCAS designed for autonomous unmanned aerial vehicles (UAVs). A variant of the canonical example of game-theoretic learning, fictitious play, is used as a coordination mechanism between the UAVs, that should choose between the alternative altitudes to fly and avoid collision. We present the implementation results of the proposed coordination mechanism in two quad-copters flying in opposite directions

    Design, Development and Implementation of Intelligent Algorithms to Increase Autonomy of Quadrotor Unmanned Missions

    Get PDF
    This thesis presents the development and implementation of intelligent algorithms to increase autonomy of unmanned missions for quadrotor type UAVs. A six-degree-of freedom dynamic model of a quadrotor is developed in Matlab/Simulink in order to support the design of control algorithms previous to real-time implementation. A dynamic inversion based control architecture is developed to minimize nonlinearities and improve robustness when the system is driven outside bounds of nominal design. The design and the implementation of the control laws are described. An immunity-based architecture is introduced for monitoring quadrotor health and its capabilities for detecting abnormal conditions are successfully demonstrated through flight testing. A vision-based navigation scheme is developed to enhance the quadrotor autonomy under GPS denied environments. An optical flow sensor and a laser range finder are used within an Extended Kalman Filter for position estimation and its estimation performance is analyzed by comparing against measurements from a GPS module. Flight testing results are presented where the performances are analyzed, showing a substantial increase of controllability and tracking when the developed algorithms are used under dynamically changing environments. Healthy flights, flights with failures, flight with GPS-denied navigation and post-failure recovery are presented

    Guided Autonomy for Quadcopter Photography

    Get PDF
    Photographing small objects with a quadcopter is non-trivial to perform with many common user interfaces, especially when it requires maneuvering an Unmanned Aerial Vehicle (C) to difficult angles in order to shoot high perspectives. The aim of this research is to employ machine learning to support better user interfaces for quadcopter photography. Human Robot Interaction (HRI) is supported by visual servoing, a specialized vision system for real-time object detection, and control policies acquired through reinforcement learning (RL). Two investigations of guided autonomy were conducted. In the first, the user directed the quadcopter with a sketch based interface, and periods of user direction were interspersed with periods of autonomous flight. In the second, the user directs the quadcopter by taking a single photo with a handheld mobile device, and the quadcopter autonomously flies to the requested vantage point. This dissertation focuses on the following problems: 1) evaluating different user interface paradigms for dynamic photography in a GPS-denied environment; 2) learning better Convolutional Neural Network (CNN) object detection models to assure a higher precision in detecting human subjects than the currently available state-of-the-art fast models; 3) transferring learning from the Gazebo simulation into the real world; 4) learning robust control policies using deep reinforcement learning to maneuver the quadcopter to multiple shooting positions with minimal human interaction
    • …
    corecore