1,291 research outputs found

    Autonomous navigation for UAVs managing motion and sensing uncertainty

    Get PDF
    We present a motion planner for the autonomous navigation of UAVs that manages motion and sensing uncertainty at planning time. By doing so, optimal paths in terms of probability of collision, traversal time and uncertainty are obtained. Moreover, our approach takes into account the real dimensions of the UAV in order to reliably estimate the probability of collision from the predicted uncertainty. The motion planner relies on a graduated fidelity state lattice and a novel multi-resolution heuristic which adapt to the obstacles in the map. This allows managing the uncertainty at planning time and yet obtaining solutions fast enough to control the UAV in real time. Experimental results show the reliability and the efficiency of our approach in different real environments and with different motion models. Finally, we also report planning results for the reconstruction of 3D scenarios, showing that with our approach the UAV can obtain a precise 3D model autonomouslyThis research was funded by the Spanish Ministry for Science, Innovation, Spain and Universities (grant TIN2017-84796-C2-1-R) and the Galician Ministry of Education, University and Professional Training, Spain (grants ED431C 2018/29 and “accreditation 2016–2019, ED431G/08”). These grants were co-funded by the European Regional Development Fund (ERDF/FEDER program)S

    Motion Planning under Uncertainty for Autonomous Navigation of Mobile Robots and UAVs

    Get PDF
    This thesis presents a reliable and efficient motion planning approach based on state lattices for the autonomous navigation of mobile robots and UAVs. The proposal retrieves optimal paths in terms of safety and traversal time, and deals with the kinematic constraints and the motion and sensing uncertainty at planning time. The efficiency is improved by a novel graduated fidelity state lattice which adapts to the obstacles in the map and the maneuverability of the robot, and by a new multi-resolution heuristic which reduces the computational complexity. The motion planner also includes a novel method to reliably estimate the probability of collision of the paths considering the uncertainty in heading and the robot dimensions

    Vehicle to Vehicle (V2V) Communication for Collision Avoidance for Multi-Copters Flying in UTM -TCL4

    Get PDF
    NASAs UAS Traffic management (UTM) research initiative is aimed at identifying requirements for safe autonomous operations of UAS operating in dense urban environments. For complete autonomous operations vehicle to vehicle (V2V) communications has been identified as an essential tool. In this paper we simulate a complete urban operations in an high fidelity simulation environment. We design a V2V communication protocol and all the vehicles participating communicate over this system. We show how V2V communication can be used for finding feasible, collision-free paths for multi agent systems. Different collision avoidance schemes are explored and an end to end simulation study shows the use of V2V communication for UTM TCL4 deployment

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    Mixed initiative planning and control of UAV teams for persistent surveillance

    Get PDF
    Tese de mestrado. Mestrado Integrado em Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    A distributed architecture for unmanned aerial systems based on publish/subscribe messaging and simultaneous localisation and mapping (SLAM) testbed

    Get PDF
    A dissertation submitted in fulfilment for the degree of Master of Science. School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa, November 2017The increased capabilities and lower cost of Micro Aerial Vehicles (MAVs) unveil big opportunities for a rapidly growing number of civilian and commercial applications. Some missions require direct control using a receiver in a point-to-point connection, involving one or very few MAVs. An alternative class of mission is remotely controlled, with the control of the drone automated to a certain extent using mission planning software and autopilot systems. For most emerging missions, there is a need for more autonomous, cooperative control of MAVs, as well as more complex data processing from sensors like cameras and laser scanners. In the last decade, this has given rise to an extensive research from both academia and industry. This research direction applies robotics and computer vision concepts to Unmanned Aerial Systems (UASs). However, UASs are often designed for specific hardware and software, thus providing limited integration, interoperability and re-usability across different missions. In addition, there are numerous open issues related to UAS command, control and communication(C3), and multi-MAVs. We argue and elaborate throughout this dissertation that some of the recent standardbased publish/subscribe communication protocols can solve many of these challenges and meet the non-functional requirements of MAV robotics applications. This dissertation assesses the MQTT, DDS and TCPROS protocols in a distributed architecture of a UAS control system and Ground Control Station software. While TCPROS has been the leading robotics communication transport for ROS applications, MQTT and DDS are lightweight enough to be used for data exchange between distributed systems of aerial robots. Furthermore, MQTT and DDS are based on industry standards to foster communication interoperability of “things”. Both protocols have been extensively presented to address many of today’s needs related to networks based on the internet of things (IoT). For example, MQTT has been used to exchange data with space probes, whereas DDS was employed for aerospace defence and applications of smart cities. We designed and implemented a distributed UAS architecture based on each publish/subscribe protocol TCPROS, MQTT and DDS. The proposed communication systems were tested with a vision-based Simultaneous Localisation and Mapping (SLAM) system involving three Parrot AR Drone2 MAVs. Within the context of this study, MQTT and DDS messaging frameworks serve the purpose of abstracting UAS complexity and heterogeneity. Additionally, these protocols are expected to provide low-latency communication and scale up to meet the requirements of real-time remote sensing applications. The most important contribution of this work is the implementation of a complete distributed communication architecture for multi-MAVs. Furthermore, we assess the viability of this architecture and benchmark the performance of the protocols in relation to an autonomous quadcopter navigation testbed composed of a SLAM algorithm, an extended Kalman filter and a PID controller.XL201

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation
    corecore