1,471 research outputs found

    Using Drones to Generate New Data for Conservation Insights

    Get PDF
    Human impact on the environment is driving a decline in biodiversity that heightens the need for informed management of conservation lands. Unmanned aerial vehicles (UAVs), also known as drones, are an increasingly cost-effective tool for generating high-quality data used to map landscape features, analyze land cover change and assess the effectiveness of conservation efforts. Traditional sources of remotely sensed data such as satellites and aircraft can be costly, inflexible and unable to detect fine-scale surface variation. This paper explores the advantages (and challenges) of analyzing data collected by drones to generate useful conservation management insights. We focus on three key considerations. The first is pre-flight planning. This includes FAA regulations, flight control software and study area considerations. The second is acquiring and processing drone captured still images to generate georeferenced map layers. The third is developing GIS models that analyze relationships between drone-derived data layers at multiple scales. To demonstrate how data collected by UAVs can provide useful conservation insights, we analyze the relationship between fire behavior and landscape features at the Weaver Dunes Preserve in Minnesota. Here, the Nature Conservancy is restoring high quality prairie habitat via a series prescribed burns. Because prairies benefit from “patchy” burns (as opposed to fires that consume the entire burn site), we map landscape features (slope, elevation and aspect) and analyze their correlation with the location and extent of post-burn patches of ash

    Methane Mitigation:Methods to Reduce Emissions, on the Path to the Paris Agreement

    Get PDF
    The atmospheric methane burden is increasing rapidly, contrary to pathways compatible with the goals of the 2015 United Nations Framework Convention on Climate Change Paris Agreement. Urgent action is required to bring methane back to a pathway more in line with the Paris goals. Emission reduction from “tractable” (easier to mitigate) anthropogenic sources such as the fossil fuel industries and landfills is being much facilitated by technical advances in the past decade, which have radically improved our ability to locate, identify, quantify, and reduce emissions. Measures to reduce emissions from “intractable” (harder to mitigate) anthropogenic sources such as agriculture and biomass burning have received less attention and are also becoming more feasible, including removal from elevated-methane ambient air near to sources. The wider effort to use microbiological and dietary intervention to reduce emissions from cattle (and humans) is not addressed in detail in this essentially geophysical review. Though they cannot replace the need to reach “net-zero” emissions of CO2, significant reductions in the methane burden will ease the timescales needed to reach required CO2 reduction targets for any particular future temperature limit. There is no single magic bullet, but implementation of a wide array of mitigation and emission reduction strategies could substantially cut the global methane burden, at a cost that is relatively low compared to the parallel and necessary measures to reduce CO2, and thereby reduce the atmospheric methane burden back toward pathways consistent with the goals of the Paris Agreement

    The Feasibility of Counting Songbirds Using Unmanned Aerial Vehicles

    Full text link
    Obtaining unbiased survey data for vocal bird species is inherently challenging due to observer biases, habitat coverage biases, and logistical constraints. We propose that combining bioacoustic monitoring with unmanned aerial vehicle (UAV) technology could reduce some of these biases and allow bird surveys to be conducted in less accessible areas. We tested the feasibility of the UAV approach to songbird surveys using a low-cost quadcopter with a simple, lightweight recorder suspended 8 m below the vehicle. In a field experiment using playback of bird recordings, we found that small variations in UAV altitude (it hovered at 28, 48, and 68 m) didn\u27t have a significant effect on detections by the recorder attached to the UAV, and we found that the detection radius of our equipment was comparable with detection radii of standard point counts. We then field tested our equipment, comparing songbird detections from our UAV-mounted recorder with standard point-count data from 51 count stations. We found that the number of birds per point on UAV counts was comparable with standard counts for most species, but there were significant underestimates for some—specifically, issues of song masking for a species with a low-frequency song, the Mourning Dove (Zenaida macroura); and underestimation of the abundance of a species that was found in very high densities, the Gray Catbird (Dumetella carolinensis). Species richness was lower on UAV counts (mean = 5.6 species point−1) than on standard counts (8.3 species point−1), but only slightly lower than on standard counts if nonaudible detections are omitted (6.5 species point−1). Excessive UAV noise is a major hurdle to using UAVs for bioacoustic monitoring, but we are optimistic that technological innovations to reduce motor and rotor noise will significantly reduce this issue. We conclude that UAV-based bioacoustic monitoring holds great promise, and we urge other researchers to consider further experimentation to refine techniques

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Land use changes in Russia and their impact on migrating geese

    Get PDF
    Since the break-up of the USSR in 1991 agriculture in European Russia has been going through sweeping reorganization that resulted in fundamental changes of land use practices. This transformation led a widespread land abandonment which resulted in old-field development on fields formerly used for grain production. These processes take place near stopover sites that are used by migrating greater white-fronted geese. This species uses a vast network of stopover sites across European Russia to rest and to forage on their way from Western Europe to the Russian Arctic and back. With old-field development near stopover sites in European Russia an ever increasing number of them should become unsuitable for migrating geese. This change might potentially reshape the migratory network of greater white-fronted goose across European Russia pushing the species to explore alternative migration routes.</p

    Acoustic monitoring of wildlife in inaccessible areas and automatic detection of bird songs from continuous recordings

    Get PDF
    The use of new technology for wildlife monitoring comes with both possible benefits and challenges. Unmanned aerial vehicles (UAVs) and automatic recording units (ARUs) can allow researchers to automatically record videos, photographs, and audio recordings of animals in unusual or inaccessible locations. However, new acoustic monitoring techniques require innovative methods to extract and utilize data from acoustic recordings. In this project we developed novel technology to record bird songs in inaccessible areas and demonstrated a useful method for extracting and classifying songs from continuous recordings. The autonomous aerial acoustic recording system (AAARS) was a UAV developed at the University of Tennessee capable of generating high-quality WAV recordings of bird songs in a variety of landscapes. The AAARS was completely silent in flight controlled by a ground-based computer monitoring station. I developed a model to convert the AAARS GPS-based flight path into a microphone exposure surface to relate species-specific acoustic signals recorded to area of microphone coverage. The vocalizations per unit area per unit time for a given focal species could then be used as an index of relative abundance or as an input in density estimation. Once collected, extraction and classification of birdsongs from acoustic recordings remains a major technological challenge. I used quadratic discrimination analysis to differentiate between inter- and intra-specific bird songs using up to sixteen acoustic measurements on human-extracted signals from audio spectrograms of five focal songbird species. Measurement-based classification was successful at separating the five species apart with only ≀5% classification error. I then used a template-matching model to extract target birdsongs from continuous field recordings and investigated the efficiency of different analytical options for classification of five focal songbird species. Decision trees, neural networks, and quadratic discriminant analysis all produced similar classification results. The means to optimize the analytical approach varied by species. I concluded that a species-specific approach should be used to accurately extract and classify songs from continuous recordings

    The Use of Drones in Agricultural Production

    Get PDF
    The drones called as mainly unmanned aerial vehicles (UAVs) have been commonly used recently in agricultural production in all part of the world because of reducing costs of hardware and the software technology as well as tremendous progresses. Moreover, UAVs gave opportunities such as reaching much faster and efficient in emergency situations, allowing access to places which humans cant reach etc. Therefore, UAVs are used in many part of our life not only for agriculture both also traffic surveillance, military operations, disaster management, border-patrolling, aerial image georeferencing, courier services, firefighting as well as monitoring of wildlife, nature, sky life etc. In the agriculture, the UAVs are used mostly for monitoring the crop production using spectral imaging on each period of time in order to identify the problems on the field such as water shortage and diseases, tracking animals using cameras and herding them with creating sounds produced by the UAVs, spraying to the field with pesticide, fungicide and water by equipping spraying kit on a UAV, generating the strong winds by the propellers of the UAV increasing pollination in the hybrid plant production as well as separating the small harmful bugs from the plants etc. The UAVs contribute a lot more to the agricultural sector, if the right implementations and researches are done. However, using new implemented lightweight materials to increase the endurance of the UAV, developing new type of lenses and sensors which can identify other diseases on plants or animals which cant be seen by the current equipment and equipping a granule spreader on a UAV so that it can distribute the seeds on the field much faster than a tractor
    • 

    corecore