739 research outputs found

    Environment classification in multiagent systems inspired by the adaptive immune system

    Get PDF
    The adaptive immune system in vertebrates is a complex, distributed, adaptive system capable of effecting collective mul-ticellular responses. Our study introduces many of the desirable properties of this biological system to decentralized multiagent systems. We adopt the crossregulation model of the adaptive immune system involving interactions between effector and regulatory cells. Effector cells can mount beneficial immune responses to microbial antigens as well as pathologic autoimmune responses to self-antigens. Deleterious autoimmunity is prevented by regulatory cells that suppress the effectors to tolerate the self-antigens. We redeploy the crossregulation model within a multiagent system by letting each agent run an ODE-based instance of the model. Results of extensive simulation-based experiments demonstrate that a distributed multiagent system can mount different responses to distinct objects in their environment. These responses are solely a result of the dynamics between virtual cells in each agent and interactions between neighboring agents. The collective dynamics gives rise to a meaningful "self"- "nonself" classification of the environment by individual agent, even if these categories were not prescribed a priori in the agents.info:eu-repo/semantics/publishedVersio

    Multirobot Systems: A Classification Focused on Coordination

    Full text link

    Agent Based Modeling and Simulation: An Informatics Perspective

    Get PDF
    The term computer simulation is related to the usage of a computational model in order to improve the understanding of a system's behavior and/or to evaluate strategies for its operation, in explanatory or predictive schemes. There are cases in which practical or ethical reasons make it impossible to realize direct observations: in these cases, the possibility of realizing 'in-machina' experiments may represent the only way to study, analyze and evaluate models of those realities. Different situations and systems are characterized by the presence of autonomous entities whose local behaviors (actions and interactions) determine the evolution of the overall system; agent-based models are particularly suited to support the definition of models of such systems, but also to support the design and implementation of simulators. Agent-Based models and Multi-Agent Systems (MAS) have been adopted to simulate very different kinds of complex systems, from the simulation of socio-economic systems to the elaboration of scenarios for logistics optimization, from biological systems to urban planning. This paper discusses the specific aspects of this approach to modeling and simulation from the perspective of Informatics, describing the typical elements of an agent-based simulation model and the relevant research.Multi-Agent Systems, Agent-Based Modeling and Simulation

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Study of robotics systems applications to the space station program

    Get PDF
    Applications of robotics systems to potential uses of the Space Station as an assembly facility, and secondarily as a servicing facility, are considered. A typical robotics system mission is described along with the pertinent application guidelines and Space Station environmental assumptions utilized in developing the robotic task scenarios. A functional description of a supervised dual-robot space structure construction system is given, and four key areas of robotic technology are defined, described, and assessed. Alternate technologies for implementing the more routine space technology support subsystems that will be required to support the Space Station robotic systems in assembly and servicing tasks are briefly discussed. The environmental conditions impacting on the robotic configuration design and operation are reviewed

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    RobotChain: Artificial Intelligence on a Blockchain using Tezos Technology

    Get PDF
    Blockchain technology is not only growing everyday at a fast-passed rhythm, but it is also a disruptive technology that has changed how we look at financial transactions. By providing a way to trust an unknown network and by allowing us to conduct transactions without the need for a central authority, blockchain has grown exponentially. Moreover, blockchain also provides decentralization of the data, immutability, accessibility, non-repudiation and irreversibility properties that makes this technology a must in many industries. But, even thought blockchain provides interesting properties, it has not been extensively used outside the financial scope. Similarly, robots have been increasingly used in factories to automate tasks that range from picking objects, to transporting them and also to work collaboratively with humans to perform complex tasks. It is important to enforce that robots act between legal and moral boundaries and that their events and data are securely stored and auditable. This rarely happens, as robots are programmed to do a specific task without certainty that that task will always be performed correctly and their data is either locally stored, without security measures, or disregarded. This means that the data, especially logs, can be altered, which means that robots and manufacturers can be accused of problems that they did not cause. Henceforth, in this work, we sought to integrate blockchain with robotics with the goal to provide enhanced security to robots, to the data and to leverage artificial intelligence algorithms. By doing an extensive overview of the methods that integrate blockchain and artificial intelligence or robotics, we found that this is a growing field but there is a lack of proposals that try to improve robotic systems by using blockchain. It was also clear that most of the existing proposals that integrate artificial intelligence and blockchain, are focused on building marketplaces and only use the latter to storage transactions. So, in this document, we proposed three different methods that use blockchain to solve different problems associated with robots. The first one is a method to securely store robot logs in a blockchain by using smart-contracts as storage and automatically detect when anomalies occur in a robot by using the data contained in the blockchain and a smart-contract. By using smart-contracts, it is assured that the data is secure and immutable as long as the blockchain has enough peers to participate in the consensus process. The second method goes beyond registering events to also register information about external sensors, like a camera, and by using smart-contracts to allow Oracles to interact with the blockchain, it was possible to leverage image analysis algorithms that can detect the presence of material to be picked. This information is then inserted into a smart-contract that automatically defines the movement that a robot should have, regarding the number of materials present to be picked. The third proposal is a method that uses blockchain to store information about the robots and the images derived from a Kinect. This information is then used by Oracles that check if there is any person located inside a robot workspace. If there is any, this information is stored and different Oracles try to identify the person. Then, a smart-contract acts appropriately by changing or even stopping the robot depending on the identity of the person and if the person is located inside the warning or the critical zone surrounding the robot. With this work, we show how blockchain can be used in robotic environments and how it can beneficial in contexts where multi-party cooperation, security, and decentralization of the data is essential. We also show how Oracles can interact with the blockchain and distributively cooperate to leverage artificial intelligence algorithms to perform analysis in the data that allow us to detect robotic anomalies, material in images and the presence of people. We also show that smart-contracts can be used to perform more tasks than just serve the purpose of automatically do monetary transactions. The proposed architectures are modular and can be used in multiple contexts such as in manufacturing, network control, robot control, and others since they are easy to integrate, adapt, maintain and extend to new domains. We expect that the intersection of blockchain and robotics will shape part of the future of robotics once blockchain is more widely used and easy to integrate. This integration will be very prominent in tasks where robots need to behave under certain constraints, in swarm robotics due to the fact that blockchain offers global information and in factories because the actions undertaken by a robot can easily be extended to the rest of the robots by using smart-contracts.Hoje em dia é possível ver que a blockchain não está apenas a crescer a um ritmo exponencial, mas que é também uma tecnologia disruptiva que mudou a forma como trabalhamos com transações financeiras. Ao fornecer uma maneira eficiente de confiar numa rede desconhecida e de permitir realizar transações sem a necessidade de uma autoridade central, a blockchain cresceu rapidamente. Além disso, a blockchain fornece também descentralização de dados, imutabilidade, acessibilidade, não-repúdio e irreversibilidade, o que torna esta tecnologia indispensável em muitos setores. Mas, mesmo fornecendo propriedades interessantes, a blockchain não tem sido amplamente utilizada fora do âmbito financeiro. Da mesma forma, os robôs têm sido cada vez mais utilizados em fábricas para automatizar tarefas que vão desde pegar objetos, transportá-los e colaborar com humanos para realizar tarefas complexas. Porém, é importante impor que os robôs atuem entre certos limites legais e morais e que seus eventos e dados são armazenados com segurança e que estes possam ser auditáveis. O problema é que isso raramente acontece. Os robôs são programados para executar uma tarefa específica sem se ter total certeza de que essa tarefa irá ser executada sempre de maneira correta, e os seus dados são armazenados localmente, desconsiderando a segurança dos dados. Sendo que em muitas ocasiões, não existe qualquer segurança. Isso significa que os dados, especialmente os logs, podem ser alterados, o que pode resultar em que os robôs e, pela mesma linha de pensamento, os fabricantes, possam ser acusados de problemas que não causaram. Tendo isto em consideração, neste trabalho, procuramos integrar a blockchain com a robótica, com o objetivo de proporcionar maior segurança aos robôs e aos dados que geram e potenciar ainda a utilização de algoritmos de inteligência artificial. Fazendo uma visão abrangente dos métodos que propõem integrar a blockchain e inteligência artificial ou robótica, descobrimos que este é um campo em crescimento, mas que há uma falta de propostas que tentem melhorar os sistemas robóticos utilizando a blockchain. Ficou também claro que a maioria das propostas existentes que integram inteligência artificial e blockchain estão focadas na construção de marketplaces e só utilizam a blockchain para armazenar a informação sobre as transações que foram executadas. Assim, neste documento, propomos três métodos que utilizam a blockchain para resolver diferentes problemas associados a robôs. O primeiro é um método para armazenar, com segurança, logs de robôs dentro de uma blockchain, utilizando para isso smart-contracts como armazenamento. Neste método foi também proposta uma maneira de detetar anomalias em robôs automaticamente, utilizando para isso os dados contidos na blockchain e smart-contracts para definir a lógica do algoritmo. Ao utilizar smart-contracts, é garantido que os dados são seguros e imutáveis, desde que a blockchain contenha nós suficientes a participar no algoritmo de consenso. O segundo método vai além de registar eventos, para registar também informações sobre sensores externos, como uma câmara, e utilizando smart-contracts para permitir que Óraculos interajam com a blockchain, foi possível utilizar algoritmos de análise de imagens, que podem detetar a presença de material para ser recolhido. Esta informação é então inserida num smart-contract que define automaticamente o movimento que um robô deve ter, tendo em consideração a quantidade de material à espera para ser recolhida. A terceira proposta é um método que utiliza a blockchain para armazenar informações sobre robôs, e imagens provenientes de uma Kinect. Esta informação é então utilizada por Óraculos que verificam se existe alguma pessoa dentro do um espaço de trabalho de um robô. Se existir alguém, essa informação é armazenada e diferentes Óraculos tentam identificar a pessoa. No fim, um smart-contract age apropriadamente, mudando ou até mesmo parando o robô, dependendo da identidade da Com este trabalho, mostramos como a blockchain pode ser utilizada em ambientes onde existam robôs e como esta pode ser benéfica em contextos onde a cooperação entre várias entidades, a segurança e a descentralização dos dados são essenciais. Mostramos também como Óraculos podem interagir com a blockchain e cooperar de forma distribuída, para alavancar algoritmos de inteligência artificial de forma a realizar análises nos dados, o que nos permite detetar anomalias robóticas, material para ser recolhido e a presença de pessoas em imagens. Mostramos também que os smart-contracts podem ser utilizados para executar mais tarefas do que servir o propósito de fazer transações monetárias de forma automática. As arquiteturas propostas neste trabalho são modulares e podem ser utilizadas em vários contextos, como no fabrico de peças, controle de robô e outras. Devido ao facto de que as arquiteturas propostas, são fáceis de integrar, adaptar, manter e estender a novos domínios. A nossa opinião é que a interseção entre a blockchain e a robótica irá moldar parte do futuro da robótica moderna assim que a blockchain seja mais utilizada e fácil de integrar em sistemas robóticos. Esta integração será muito proeminente em tarefas onde os robôs precisam de se comportar sob certas restrições, em enxames de robôs, devido ao fato de que a blockchain fornece informação global sobre o estado da rede, e também em fábricas, porque as ações realizadas por um robô podem ser facilmente estendidas ao resto dos robôs, e porque fornece um mecanismo extra de segurança aos dados e a todas as ações que são efetuadas com ajuda de smart-contracts

    Swarm Robotic interactions in an open and cluttered environment: a survey

    Get PDF
    Recent population migrations have led to numerous accidents and deaths. Little research has been done to help migrants in their journey. For this reason, a literature review of the latest research conducted in previous years is required to identify new research trends in human-swarm interaction. This article presents a review of techniques that can be used in a robots swarm to find, locate, protect and help migrants in hazardous environment such as militarized zone. The paper presents a swarm interaction taxonomy including a detailed study on the control of swarm with and without interaction. As the interaction mainly occurs in cluttered or crowded environment (with obstacles) the paper discussed the algorithms related to navigation that can be included with an interaction strategy. It focused on comparing algorithms and their advantages and disadvantages

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study
    corecore