2,706 research outputs found

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Robust Whole-Body Motion Control of Legged Robots

    Full text link
    We introduce a robust control architecture for the whole-body motion control of torque controlled robots with arms and legs. The method is based on the robust control of contact forces in order to track a planned Center of Mass trajectory. Its appeal lies in the ability to guarantee robust stability and performance despite rigid body model mismatch, actuator dynamics, delays, contact surface stiffness, and unobserved ground profiles. Furthermore, we introduce a task space decomposition approach which removes the coupling effects between contact force controller and the other non-contact controllers. Finally, we verify our control performance on a quadruped robot and compare its performance to a standard inverse dynamics approach on hardware.Comment: 8 Page

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Kinematic strategies in newly walking toddlers stepping over different support surfaces

    Get PDF
    In adults, locomotor movements are accommodated to various support surface conditions by means of specific anticipatory locomotor adjustments and changes in the intersegmental coordination. Here we studied the kinematic strategies of toddlers at the onset of independent walking when negotiating various support surface conditions: stepping over an obstacle, walking on an inclined surface, and on a staircase. Generally, toddlers could perform these tasks only when supported by the arm. They exhibited strategies very different from those of the adults. Although adults maintained walking speed roughly constant, toddlers markedly accelerated when walking downhill or downstairs and decelerated when walking uphill or upstairs. Their coordination pattern of thigh-shank-foot elevation angles exhibited greater inter-trial variability than that in adults, but it did not undergo the systematic change as a function of task that was present in adults. Thus the intersegmental covariance plane rotated across tasks in adults, whereas its orientation remained roughly constant in toddlers. In contrast with the adults, the toddlers often tended to place the foot onto the obstacle or across the edges of the stairs. We interpret such foot placements as part of a haptic exploratory repertoire and we argue that the maintenance of a roughly constant planar covariance--irrespective of the surface inclination and height--may be functional to the exploratory behavior. The latter notion is consistent with the hypothesis proposed decades ago by Bernstein that, when humans start to learn a skill, they may restrict the number of degrees of freedom to reduce the size of the search space and simplify the coordination

    A methodology for the Lower Limb Robotic Rehabilitation system

    Get PDF
    The overall goal of this thesis is to develop a new functional lower limb robot-assisted rehabilitation system for people with a paretic lower limb. A unilateral rehabilitation method is investigated, where the robot acts as an assistive device to provide the impaired leg therapeutic training through simulating the kinematics and dynamics of the ankle and lower leg movements. Foot trajectories of healthy subjects and post-stroke patients were recorded by a dedicated optical motion tracking system in a clinical gait measurement laboratory. A prototype 6 degrees of freedom parallel robot was initially built in order to verify capability of achieving singularity-free foot trajectories of healthy subjects in various exercises. This was then followed by building and testing another larger parallel robot to investigate the real-sized foot trajectories of patients. The overall results verify the designed robot’s capability in successfully tracking foot trajectories during different exercises. The thesis finally proposes a system of bilateral rehabilitation based on the concept of self-learning, where a passive parallel mechanism follows and records motion signatures of the patient’s healthy leg, and an active parallel mechanism provides motion for the impaired leg based on the kinematic mapping of the motion produced by the passive mechanism
    • …
    corecore