3,912 research outputs found

    An energy scaled and expanded vector-based forwarding scheme for industrial underwater acoustic sensor networks with sink mobility

    Get PDF
    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay

    A Communication Modem Design & Implementation for the Underwater Sensor Network System

    Get PDF
    Underwater sensor nodes will find applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications. Moreover, unmanned or autonomous underwater vehicles (UUVs, AUVs), equipped with sensors, will enable the exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. Underwater acoustic networking is the enabling technology for these applications. Underwater networks consist of a variable number of sensors and vehicles that are deployed to perform collaborative monitoring tasks over a given area. Underwater acoustic communication have received much attention as their applications, have begun to shift from military toward commercial. The growing interest in underwater acoustic communications come as a response to the rapidly growing needs for wireless underwater communications, brought in part by the broadening of applications, such as military and commercial ones. Commercial applications which have received much attention lately are pollution monitoring in environmental systems, remote control in off-shore oil industry, and collection of scientific data recorded at benthic station without the need for retrieving the instruments. Many developing applications include of commercial and military are now calling for real-time communication with submarines and autonomous underwater vehicles, not only in point-to-point links, but also in network configurations. In this thesis, several fundamental key aspects of underwater acoustic communications are investigated. Different architectures for global sand local communication modem for underwater sensor networks are discussed, and the characteristics of the underwater communication modem is detailed. The main challenges for the development of efficient networking solutions posed by the underwater environment are detailed and a cross-layer approach to the integration of all communication functionalities is suggested. The performance of a digital baseband signal processing and data transmission rate depends on the modulation technique. Communication modem for Underwater sensor network is implemented using by DBPSK modem technique. In order to implement underwater sensor network modem, SNR detection block is suggested. SNR detection block has the reference SNR value that selects between base mode and additive user mode. In this thesis, suggested system is based on software interface and all Hardware(PLL, modem, filter, equalizer etc) is implemented by software, exclusive of DSP, A/D, D/A converter, SDRAM and Flash memory.제1장.서론 = 1 제2장.수중 센서 네트워크 시스템 개요 = 5 제2-1절.기존의 연구 동향 및 수중 센서 네트워크 통신 구조 = 5 2-1-1.기존의 연구 동향 = 5 2-1-2.수중 센서 네트워크의 통신 구조 = 7 제2-2절.시스템 개요 = 9 제3장.시스템 구현 = 12 제3-1절.송·수신기 구조 = 12 제3-2절.시스템 구현 및 최적화 = 17 제4장.시스템 성능 검증 = 27 제5장.결론 = 41 참고문헌 = 4

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Effect of Communication Delays on the Successful Coordination of a Group of Biomimetic AUVs

    Get PDF
    In this paper, the influence of delays on the ability of a formation control algorithm to coordinate a group of twelve Biomimetic Autonomous Underwater Vehicles (BAUVs) is investigated. In this study the formation control algorithm is a decentralized methodology based on the behavioural mechanisms of fish within school structures. Incorporated within this algorithm is a representation of the well-known and frequently used communication protocol, Time-Division-Multiple-Access (TDMA). TDMA operates by assigning each vehicle a specific timeslot during which it can broadcast to the remaining members of the group. The size of this timeslot varies depending on a number of operational parameters such as the size of the message being transmitted, the hardware used and the distance between neighbouring vehicles. Therefore, in this work, numerous timeslot sizes are tested that range from theoretical possible values through to values used in practice. The formation control algorithm and the TDMA protocol have been implemented within a validated mathematical of the RoboSalmon BAUV designed and manufactured at the University of Glasgow. The results demonstrate a significant deterioration in the ability of the formation control algorithms as the timeslot size is increased. This deterioration is due to the fact that as the timeslot size is increased, the interim period between successive communication updates increases and as a result, the error between where the formation control algorithm estimates each vehicle to be and where they actually are, increases. As a result, since the algorithm no longer has an accurate representation of the positioning of neighbouring vehicles, it is no longer capable of selecting the correct behavioural equation and subsequently, is unable to coordinate the vehicles to form a stable group structure

    Latency-Optimized and Energy-Efficient MAC Protocol for Underwater Acoustic Sensor Networks: A Cross-Layer Approach

    Get PDF
    Considering the energy constraint for fixed sensor nodes and the unacceptable long propagation delay, especially for latency sensitive applications of underwater acoustic sensor networks, we propose a MAC protocol that is latency-optimized and energy-efficient scheme and combines the physical layer and the MAC layer to shorten transmission delay. On physical layer, we apply convolution coding and interleaver for transmitted information. Moreover, dynamic code rate is exploited at the receiver side to accelerate data reception rate. On MAC layer, unfixed frame length scheme is applied to reduce transmission delay, and to ensure the data successful transmission rate at the same time. Furthermore, we propose a network topology: an underwater acoustic sensor network with mobile agent. Through fully utilizing the supper capabilities on computation and mobility of autonomous underwater vehicles, the energy consumption for fixed sensor nodes can be extremely reduced, so that the lifetime of networks is extended
    corecore