497 research outputs found

    A self-learning intersection control system for connected and automated vehicles

    Get PDF
    This study proposes a Decentralized Sparse Coordination Learning System (DSCLS) based on Deep Reinforcement Learning (DRL) to control intersections under the Connected and Automated Vehicles (CAVs) environment. In this approach, roadway sections are divided into small areas; vehicles try to reserve their desired area ahead of time, based on having a common desired area with other CAVs; the vehicles would be in an independent or coordinated state. Individual CAVs are set accountable for decision-making at each step in both coordinated and independent states. In the training process, CAVs learn to minimize the overall delay at the intersection. Due to the chain impact of taking random actions in the training course, the trained model can deal with unprecedented volume circumstances, the main challenge in intersection management. Application of the model to a single-lane intersection with no turning movement as a proof-of-concept test reveals noticeable improvements in traffic measures compared to three other intersection control systems. A Spring Mass Damper (SMD) model is developed to control platooning behavior of CAVs. In the SMD model, each vehicle is assumed as a mass, coupled with its preceding vehicle with a spring and a damper. The spring constant and damper coefficient control the interaction between vehicles. Limitations on communication range and the number of vehicles in each platoon are applied in this model, and the SMD model controls intra-platoon and inter-platoon interactions. The simulation result for a regular highway section reveals that the proposed platooning algorithm increases the maximum throughput by 29% and 63% under 50% and 100% market penetration rate of CAVs. A merging section with different volume combinations on the main section and merging section and different market penetration rates of CAVs is also modeled to test inter-platoon spacing performance in accommodating merging vehicles. Noticeable travel time reduction is observed in both mainline and merging lanes and under all volume combinations in 80% and higher MPR of CAVs. For a more reliable assessment of the DSCLS, the model is applied to a more realistic intersection, including three approaching lanes in each direction and turning movements. The proposed algorithm decreases delay by 58%, 19%, and 13% in moderate, high, and extreme volume regimes, improving travel time accordingly. Comparison of safety measures reveals 28% improvement in Post Encroachment Time (PET) in the extreme volume regime and minor improvements in high and moderate volume regimes. Due to the limited acceleration and deceleration rates, the proposed model does not show a better performance in environmental measures, including fuel consumption and CO2 emission, compared to the conventional control systems. However, the DSCLS noticeably outperforms the other pixel-reservation counterpart control system, with limited acceleration and deceleration rates. The application of the model to a corridor of four interactions shows the same trends in traffic, safety, and environmental measures as the single intersection experiment. An automated intersection control system for platooning CAVs is developed by combining the two proposed models, which remarkably improves traffic and safety measures, specifically in extreme volume regimes compared to the regular DSCLS model

    Quantum Artificial Intelligence Supported Autonomous Truck Platooning

    Get PDF
    Truck platooning can potentially increase the operational efficiency of freight movement on U.S. corridors, improving commercial productivity and economic vibrancy. Predicting each leader vehicle trajectory in the autonomous truck platoon using Artificial Intelligence (AI) can enhance platoon efficiency and safety. Reliance on classical AI may not be efficient for this purpose as it will increase the computational burden for each truck in the platoon. However, Quantum Artificial Intelligence (AI) can be used in this scenario to enhance learning efficiency, learning capacity, and run-time improvements. This study developed and evaluated a Long Short-Term Memory Networks (LSTM) model and a hybrid quantum-classical LSTM (QLSTM) for predicting the trajectory of each leader vehicle of an autonomous truck platoon. Both the LSTM and QLSTM provided comparable results. However, Quantum-AI is more efficient in real-time management for an automated truck platoon as it requires less computational burden. The QLSTM training required less data compared to LSTM. Moreover, QLSTM also used fewer parameters compared to classical LSTM. This study also evaluated an autonomous truck platoon\u27s operational efficacy and string stability with the prediction of trajectory from both classical LSTM and QLSTM using the Intelligent Driver Model (IDM). The platoon operating with LSTM and QLSTM trajectory prediction showed comparable operational efficiency. Moreover, the platoon operating with QLSTM trajectory prediction provided better string stability compared to LSTM

    Reduced Fuel Emissions through Connected Vehicles and Truck Platooning

    Get PDF
    Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag across the convoy—could eliminate 37.9 million metric tons of CO2 emissions between 2022 and 2026

    Fuel-efficient driving strategies

    Get PDF
    This thesis is concerned with fuel-efficient driving strategies for vehicles driving on roads with varying topography, as well as estimation of road grade\ua0and vehicle mass for vehicles utilizing such strategies. A framework referred\ua0to as speed profile optimization (SPO), is introduced for reducing the fuel\ua0or energy consumption of single vehicles (equipped with either combustion\ua0or electric engines) and platoons of several vehicles. Using the SPO-based\ua0methods, average reductions of 11.5% in fuel consumption for single trucks,\ua07.5 to 12.6% energy savings in electric vehicles, and 15.8 to 17.4% average\ua0fuel consumption reductions for platoons of trucks were obtained. Moreover,\ua0SPO-based methods were shown to achieve higher savings compared to\ua0the commonly used methods for fuel-efficient driving. Furthermore, it was\ua0demonstrated that the simulations are sufficiently accurate to be transferred\ua0to real trucks. In the SPO-based methods, the optimized speed profiles were\ua0generated using a genetic algorithm for which it was demonstrated, in a\ua0discretized case, that it is able to produce speed profiles whose fuel consumption\ua0is within 2% of the theoretical optimum.A feedforward neural network (FFNN) approach, with a simple feedback\ua0mechanism, is introduced and evaluated in simulations, for simultaneous estimation of the road grade and vehicle mass. The FFNN provided road grade\ua0estimates with root mean square (RMS) error of around 0.10 to 0.14 degrees,\ua0as well as vehicle mass estimates with an average RMS error of 1%, relative\ua0to the actual value. The estimates obtained with the FFNN outperform road\ua0grade and mass estimates obtained with other approaches

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Assisted Car Platooning and Congestion Control at Road Intersections

    Get PDF
    Enhancing road safety and traffic efficiency are the important aspects and goals that automakers and researchers trying to achieve in recent years. The autonomous vehicle technology has been identified as a solution to achieve these goals. However, the adoption of fully autonomous vehicles in the current market is still in the very early stages of deployment. The objective of this paper is to develop a Cooperative Adaptive Cruise Control (CACC) model at a road intersection using platooning car-following mobility models, object detection at traffic light units, and Vehicle-to-Everything (V2X) communication through vehicular ad hoc networks (VANETs). The mobility model considers traffic simulation using the SUMO-PLEXE-VEINS platforms integration. Next, a prototype of an assisted car platooning system consisting of roadside unit (RSU) and on-board units (OBU) is developed using artificial intelligence (AI)-based smart traffic light for obstruction detection at an intersection and modified remote-control cars with V2X communication equipped with in-vehicle alert notification, respectively. The results show accurate detection of obstruction by the proposed assisted car platooning system, and an optimised smart traffic light operation that can reduce congestion and fuel consumption, improve traffic flow, and enhance road safety. The findings from this paper can be used as a baseline for the framework of CACC implementation by legislators, policymakers, infrastructure providers, and vehicle manufacturers
    • …
    corecore