1,197 research outputs found

    Generic framework for the personal omni-remote controller using M2MI

    Get PDF
    A Generic Framework for the Personal Omni-Remote Controller Using M2MI is a master’s thesis outlining a generic framework for the wireless omni-remote controller that controls neighboring appliances by using Many-to-Many Invocation (M2MI). M2MI is an object-oriented abstraction of broadcast communication. First, this paper introduces the history of remote controllers and analyzes omni-remote controller projects made by other researchers in this area, such as the Pebbles PDA project at Carnegie Mellon University and HP’s COOLTOWN project. Second, this paper depicts a generic framework of the personal omni-remote controller system including architecture, type hierarchy, and service discovery. In this framework, a module approach and a decentralized dual-mode service discovery scheme are introduced. When users request a certain type of service, their omni-remote controller application will first discover the available appliances in the vicinity and then bring up the corresponding control module for the target appliance. Thus, users can control the appliance through the User Interface of the control module. To join the omni-remote controller system, servers and clients need to follow the type hierarchy convention of the system. Finally, several implementations are given to show the control of different appliances with different capabilities. These appliances include thermostats, TVs with parental control, and washing machines

    Modeling the controlled delivery power grid

    Get PDF
    Competitive energy markets, stricter regulation, and the integration of distributed renewable energy sources are forcing companies to reengineer energy production and distribution. The Controlled Delivery Power Grid is proposed as a novel approach to transport energy from generators to consumers. In this approach, energy distribution is performed in an asynchronous and distributed fashion. Much like the Internet, energy is delivered as addressable packets, which allow a controlled delivery of energy. As a proof-of-concept of the controllable delivery grid, two experimental test beds, one with integrated energy storage and another with no energy storage, were designed and built to evaluate the efficiency of a power distribution and scheduling scheme. Both test beds use a request-grant protocol where energy is supplied in discrete quantities. The performance of the system is measured in terms of the ability to satisfy requests from consumers. The results show high satisfaction ratios for distribution capacities that are smaller than the maximum demand. The distribution of energy is modelled with graph theory and as an Integer Linear Programming problem to minimize transmission losses and determine routes for energy flows in a network with distributed sources and consumers. The obtained results are compared with a heuristic approach based on the Dijkstra\u27s shortest path algorithm, which is proposed as a feasible approach to routing the transmission of packetized energy

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    A Design Rationale for Pervasive Computing - User Experience, Contextual Change, and Technical Requirements

    Get PDF
    The vision of pervasive computing promises a shift from information technology per se to what can be accomplished by using it, thereby fundamentally changing the relationship between people and information technology. In order to realize this vision, a large number of issues concerning user experience, contextual change, and technical requirements should be addressed. We provide a design rationale for pervasive computing that encompasses these issues, in which we argue that a prominent aspect of user experience is to provide user control, primarily founded in human values. As one of the more significant aspects of the user experience, we provide an extended discussion about privacy. With contextual change, we address the fundamental change in previously established relationships between the practices of individuals, social institutions, and physical environments that pervasive computing entails. Finally, issues of technical requirements refer to technology neutrality and openness--factors that we argue are fundamental for realizing pervasive computing. We describe a number of empirical and technical studies, the results of which have helped to verify aspects of the design rationale as well as shaping new aspects of it. The empirical studies include an ethnographic-inspired study focusing on information technology support for everyday activities, a study based on structured interviews concerning relationships between contexts of use and everyday planning activities, and a focus group study of laypeople’s interpretations of the concept of privacy in relation to information technology. The first technical study concerns the model of personal service environments as a means for addressing a number of challenges concerning user experience, contextual change, and technical requirements. Two other technical studies relate to a model for device-independent service development and the wearable server as a means to address issues of continuous usage experience and technology neutrality respectively

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Advanced photonic and electronic systems - WILGA 2017

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers more than 350 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET by PAN and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2017 was the XL edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2017 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445

    Wireless Sensor Network: At a Glance

    Get PDF
    corecore