481 research outputs found

    An Enhanced Power Sharing Scheme for Voltage unbalance and harmonics compensation in an islanded AC microgrid

    Get PDF

    Four-leg converters with improved common current sharing and selective voltage-quality enhancement for islanded microgrids

    Get PDF
    Four-leg dc-ac power converters are widely used for the power grids to manage grid voltage unbalance caused by the interconnection of single-phase or three-phase unbalanced loads. These converters can further be connected in parallel to increase the overall power rating. The control of these converters poses a particular challenge if they are placed far apart with no links between them (e.g., in islanded microgrids). This challenge is studied in this paper with each four-leg converter designed to have improved common current sharing and selective voltage-quality enhancement. The common current sharing, including zero sequence component, is necessary since loads are spread over the microgrid and they are hence the common responsibility of all converters. The voltage-quality enhancement consideration should however be more selective since different loads have different sensitivity levels towards voltage disturbances. Converters connected to the more sensitive load buses should therefore be selectively triggered for compensation when voltage unbalances at their protected buses exceed the predefined thresholds. The proposed scheme is therefore different from conventional centralized schemes protecting only a common bus. Simulation and experimental results obtained have verified the effectiveness of the proposed scheme when applied to a four-wire islanded microgrid

    Cooperative Control of Multi-Master-Slave Islanded Microgrid with Power Quality Enhancement Based on Conservative Power Theory

    Get PDF
    Made available in DSpace on 2018-11-26T16:04:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-07-01Cooperative control of power converters in a microgrid offers power quality enhancement at sensitive load buses. Such cooperation is particularly important in the presence of reactive, nonlinear, and unbalanced loads. In this paper, a multi-master-slave-based control of distributed generators interface converters in a three-phase four-wire islanded microgrid using the conservative power theory (CPT) is proposed. Inverters located in close proximity operate as a group in master- salve mode. Slaves inject the available energy and compensate selectively unwanted current components of local loads with the secondary effect of having enhanced voltage waveforms while masters share the remaining load power autonomously with distant groups using frequency droop. The close proximity makes it practical for control signals to be communicated between inverters in one group with the potential to provide rapid load sharing response for mitigation of undesirable current components. Since each primary source has its own constraints, a supervisory control is considered for each group to determine convenient sharing factors. The CPT decompositions provide decoupled current and power references in abc-frame, resulting in a selective control strategy able to share each current component with desired percentage among the microgrid inverters. Simulation results are presented to demonstrate the effectiveness of the proposed method.Colorado Sch Mines, Dept EECS, Golden, CO 80401 USAAalborg Univ, Dept Energy Technol, DK-9220 Aalborg, DenmarkPetr Inst, Dept Elect Engn, Abu Dhabi 2533, U Arab Emirate

    Secondary Control for Voltage Quality Enhancement in Microgrids

    Get PDF

    Autonomous Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid

    Get PDF

    Three-phase primary control for unbalance sharing between distributed generation units in a microgrid

    Get PDF
    For islanded microgrids, droop-based control concepts have been developed both in single and three-phase variants. The three-phase controllers often assume a balanced network, hence, unbalance sharing and/or mitigation remains a challenging issue. Therefore, in this paper, unbalance is considered in a three-phase islanded microgrid where the distributed generation (DG) units are operated by the voltage-based droop (VBD) control. For this purpose, the VBD control, which has been developed for single-phase systems, is extended for three phase application and an additional control loop is added for unbalance mitigation and sharing. The method is based on an unbalance mitigation scheme by DG units in grid-connected systems, which is altered for usage in grid-forming DG units with droop control. The reaction of the DG units to unbalance is determined by the main parameter of the additional control loop, viz, the distortion damping resistance Rd. The effect of Rd on the unbalance mitigation is studied in this paper, i.e., dependent on Rd, the DG units can be resistive for unbalance (RU) or they can contribute in the weakest phase (CW). The paper shows that the RU method decreases the line losses in the system and achieves better power equalization between the DG unit's phases. However, it leads to a larger voltage unbalance near the loads. The CW method leads to a more uneven power between the DG unit's phases and larger line losses, but a better voltage quality near the load. However, it can negatively affect the stability of the system. In microgrids with multiple DG units, the distortion damping resistance is set such that the unbalanced load can be shared between multiple DG units in an actively controlled manner rather than being determined by the microgrid configuration solely. The unit with the lowest distortion resistance provides relatively more of the unbalanced currents

    Hierarchical Control Scheme for Voltage Unbalance Compensation in Islanded Microgrids

    Get PDF
    • …
    corecore