3,419 research outputs found

    Under vehicle perception for high level safety measures using a catadioptric camera system

    Get PDF
    In recent years, under vehicle surveillance and the classification of the vehicles become an indispensable task that must be achieved for security measures in certain areas such as shopping centers, government buildings, army camps etc. The main challenge to achieve this task is to monitor the under frames of the means of transportations. In this paper, we present a novel solution to achieve this aim. Our solution consists of three main parts: monitoring, detection and classification. In the first part we design a new catadioptric camera system in which the perspective camera points downwards to the catadioptric mirror mounted to the body of a mobile robot. Thanks to the catadioptric mirror the scenes against the camera optical axis direction can be viewed. In the second part we use speeded up robust features (SURF) in an object recognition algorithm. Fast appearance based mapping algorithm (FAB-MAP) is exploited for the classification of the means of transportations in the third part. Proposed technique is implemented in a laboratory environment

    Behaviourally meaningful representations from normalisation and context-guided denoising

    Get PDF
    Many existing independent component analysis algorithms include a preprocessing stage where the inputs are sphered. This amounts to normalising the data such that all correlations between the variables are removed. In this work, I show that sphering allows very weak contextual modulation to steer the development of meaningful features. Context-biased competition has been proposed as a model of covert attention and I propose that sphering-like normalisation also allows weaker top-down bias to guide attention

    Prediction of intent in robotics and multi-agent systems.

    Get PDF
    Moving beyond the stimulus contained in observable agent behaviour, i.e. understanding the underlying intent of the observed agent is of immense interest in a variety of domains that involve collaborative and competitive scenarios, for example assistive robotics, computer games, robot-human interaction, decision support and intelligent tutoring. This review paper examines approaches for performing action recognition and prediction of intent from a multi-disciplinary perspective, in both single robot and multi-agent scenarios, and analyses the underlying challenges, focusing mainly on generative approaches

    Saliency-based approaches for multidimensional explainability of deep networks

    Get PDF
    In deep learning, visualization techniques extract the salient patterns exploited by deep networks to perform a task (e.g. image classification) focusing on single images. These methods allow a better understanding of these complex models, empowering the identification of the most informative parts of the input data. Beyond the deep network understanding, visual saliency is useful for many quantitative reasons and applications, both in the 2D and 3D domains, such as the analysis of the generalization capabilities of a classifier and autonomous navigation. In this thesis, we describe an approach to cope with the interpretability problem of a convolutional neural network and propose our ideas on how to exploit the visualization for applications like image classification and active object recognition. After a brief overview on common visualization methods producing attention/saliency maps, we will address two separate points: firstly, we will describe how visual saliency can be effectively used in the 2D domain (e.g. RGB images) to boost image classification performances: as a matter of fact, visual summaries, i.e. a compact representation of an ensemble of saliency maps, can be used to improve the classification accuracy of a network through summary-driven specializations. Then, we will present a 3D active recognition system that allows to consider different views of a target object, overcoming the single-view hypothesis of classical object recognition, making the classification problem much easier in principle. Here we adopt such attention maps in a quantitative fashion, by building a 3D dense saliency volume which fuses together saliency maps obtained from different viewpoints, obtaining a continuous proxy on which parts of an object are more discriminative for a given classifier. Finally, we will show how to inject this representations in a real world application, so that an agent (e.g. robot) can move knowing the capabilities of its classifier
    • …
    corecore