24,549 research outputs found

    A macroscopic analytical model of collaboration in distributed robotic systems

    Get PDF
    In this article, we present a macroscopic analytical model of collaboration in a group of reactive robots. The model consists of a series of coupled differential equations that describe the dynamics of group behavior. After presenting the general model, we analyze in detail a case study of collaboration, the stick-pulling experiment, studied experimentally and in simulation by Ijspeert et al. [Autonomous Robots, 11, 149-171]. The robots' task is to pull sticks out of their holes, and it can be successfully achieved only through the collaboration of two robots. There is no explicit communication or coordination between the robots. Unlike microscopic simulations (sensor-based or using a probabilistic numerical model), in which computational time scales with the robot group size, the macroscopic model is computationally efficient, because its solutions are independent of robot group size. Analysis reproduces several qualitative conclusions of Ijspeert et al.: namely, the different dynamical regimes for different values of the ratio of robots to sticks, the existence of optimal control parameters that maximize system performance as a function of group size, and the transition from superlinear to sublinear performance as the number of robots is increased

    Dynamic Control of Mobile Multirobot Systems: The Cluster Space Formulation

    Get PDF
    The formation control technique called cluster space control promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established the conceptual foundation of this approach and has experimentally verified and validated its use for various systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster space framework and introduce a new cluster space dynamic model. This model represents the dynamics of the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented to transform cluster space compensation forces into robot-level forces to be applied to the robots in the formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out the formation dynamics and effectively decouples the cluster space variables. Computer simulations and experimental results using three autonomous surface vessels and four land rovers show the effectiveness of the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.Fil: Mas, Ignacio Agustin. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kitts, Christopher. Santa Clara University; Estados Unido

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    The Contribution of Society to the Construction of Individual Intelligence

    Get PDF
    It is argued that society is a crucial factor in the construction of individual intelligence. In other words that it is important that intelligence is socially situated in an analogous way to the physical situation of robots. Evidence that this may be the case is taken from developmental linguistics, the social intelligence hypothesis, the complexity of society, the need for self-reflection and autism. The consequences for the development of artificial social agents is briefly considered. Finally some challenges for research into socially situated intelligence are highlighted

    Robot swarming applications

    Get PDF
    This paper discusses the different modes of operation of a swarm of robots: (i) non-communicative swarming, (ii) communicative swarming, (iii) networking, (iv) olfactory-based navigation and (v) assistive swarming. I briefly present the state of the art in swarming and outline the major techniques applied for each mode of operation and discuss the related problems and expected results
    corecore