680 research outputs found

    Autonomous Robotic System using Non-Destructive Evaluation methods for Bridge Deck Inspection

    Full text link
    Bridge condition assessment is important to maintain the quality of highway roads for public transport. Bridge deterioration with time is inevitable due to aging material, environmental wear and in some cases, inadequate maintenance. Non-destructive evaluation (NDE) methods are preferred for condition assessment for bridges, concrete buildings, and other civil structures. Some examples of NDE methods are ground penetrating radar (GPR), acoustic emission, and electrical resistivity (ER). NDE methods provide the ability to inspect a structure without causing any damage to the structure in the process. In addition, NDE methods typically cost less than other methods, since they do not require inspection sites to be evacuated prior to inspection, which greatly reduces the cost of safety related issues during the inspection process. In this paper, an autonomous robotic system equipped with three different NDE sensors is presented. The system employs GPR, ER, and a camera for data collection. The system is capable of performing real-time, cost-effective bridge deck inspection, and is comprised of a mechanical robot design and machine learning and pattern recognition methods for automated steel rebar picking to provide realtime condition maps of the corrosive deck environments

    Surface and Sub-Surface Analyses for Bridge Inspection

    Get PDF
    The development of bridge inspection solutions has been discussed in the recent past. In this dissertation, significant development and improvement on the state-of-the-art in the field of bridge inspection using multiple sensors (e.g. ground penetrating radar (GPR) and visual sensor) has been proposed. In the first part of this research (discussed in chapter 3), the focus is towards developing effective and novel methods for rebar detection and localization for sub-surface bridge inspection of steel rebars. The data has been collected using Ground Penetrating Radar (GPR) sensor on real bridge decks. In this regard, a number of different approaches have been successively developed that continue to improve the state-of-the-art in this particular research area. The second part (discussed in chapter 4) of this research deals with the development of an automated system for steel bridge defect detection system using a Multi-Directional Bicycle Robot. The training data has been acquired from actual bridges in Vietnam and validation is performed on data collected using Bicycle Robot from actual bridge located in Highway-80, Lovelock, Nevada, USA. A number of different proposed methods have been discussed in chapter 4. The final chapter of the dissertation will conclude the findings from the different parts and discuss ways of improving on the existing works in the near future

    Bridge Inspection: Human Performance, Unmanned Aerial Systems and Automation

    Get PDF
    Unmanned aerial systems (UASs) have become of considerable private and commercial interest for a variety of jobs and entertainment in the past 10 years. This paper is a literature review of the state of practice for the United States bridge inspection programs and outlines how automated and unmanned bridge inspections can be made suitable for present and future needs. At its best, current technology limits UAS use to an assistive tool for the inspector to perform a bridge inspection faster, safer, and without traffic closure. The major challenges for UASs are satisfying restrictive Federal Aviation Administration regulations, control issues in a GPS-denied environment, pilot expenses and availability, time and cost allocated to tuning, maintenance, post-processing time, and acceptance of the collected data by bridge owners. Using UASs with self-navigation abilities and improving image-processing algorithms to provide results near real-time could revolutionize the bridge inspection industry by providing accurate, multi-use, autonomous three-dimensional models and damage identification

    Design and Development of Climbing Robotic Systems for Automated Inspection of Steel Structures and Bridges

    Get PDF
    Steel structures are indispensable parts of modern civilization, with typical civil infrastructures including bridges, wind turbines, electric towers, oil rigs, ships, and submarines, all made of steel. These structures require frequent maintenance to ensure safety and longevity. Steel bridges are the most challenging architectures due totheir complexity and height. Most inspections are conducted manually by professional human inspectors with special devices to inspect visible damages and defects on or inside these structures. However, this procedure is usually highly time-consuming, costly, and risky. Automated solutions are desired to address this problem. However, arduous engineering is delaying progress. A complete system needs to deal with three main problems: (1) locomotive performance for the high complexity of steel bridges, including differential curvatures, transitions between beams, and obstacles; (2) data collection capability, inclusive of visible and invisible damages, in-depth information such as vibration, coat, and material thickness, etc.; and (3) working conditions made up of gust winds. To achieve such a complete system, this dissertation presents novel developments of inspection-climbing robots. Five different robot versions are designed to find the simplest and most effective configuration as well as control manner. Our approach started with (1) a transformable tank-like robot integrated with a haptic device and ii two natural-inspired locomotion, (2) a roller chain-like robot, (3) a hybrid worming mobile robot, (4) a multi-directional bicycle robot, and (5) an omni-directional climbing Robot, identified as the most potential solution for automated steel bridge inspection. For each robotic development, detailed mechanical analysis frameworks are presented. Both lab tests and field deployments of these robotic systems have been conducted to validate the proposed designs

    A Novel Remote Visual Inspection System for Bridge Predictive Maintenance

    Get PDF
    Predictive maintenance on infrastructures is currently a hot topic. Its importance is proportional to the damages resulting from the collapse of the infrastructure. Bridges, dams and tunnels are placed on top on the scale of severity of potential damages due to the fact that they can cause loss of lives. Traditional inspection methods are not objective, tied to the inspector’s experience and require human presence on site. To overpass the limits of the current technologies and methods, the authors of this paper developed a unique new concept: a remote visual inspection system to perform predictive maintenance on infrastructures such as bridges. This is based on the fusion between advanced robotic technologies and the Automated Visual Inspection that guarantees objective results, high-level of safety and low processing time of the results

    Non-Contact Evaluation Methods for Infrastructure Condition Assessment

    Get PDF
    The United States infrastructure, e.g. roads and bridges, are in a critical condition. Inspection, monitoring, and maintenance of these infrastructure in the traditional manner can be expensive, dangerous, time-consuming, and tied to human judgment (the inspector). Non-contact methods can help overcoming these challenges. In this dissertation two aspects of non-contact methods are explored: inspections using unmanned aerial systems (UASs), and conditions assessment using image processing and machine learning techniques. This presents a set of investigations to determine a guideline for remote autonomous bridge inspections
    • …
    corecore